Improving the QBO Forcing by Resolved Waves With Vertical Grid Refinement in E3SMv2

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
W. Yu, W. M. Hannah, J. J. Benedict, C.-C. Chen, J. H. Richter
{"title":"Improving the QBO Forcing by Resolved Waves With Vertical Grid Refinement in E3SMv2","authors":"W. Yu,&nbsp;W. M. Hannah,&nbsp;J. J. Benedict,&nbsp;C.-C. Chen,&nbsp;J. H. Richter","doi":"10.1029/2024MS004473","DOIUrl":null,"url":null,"abstract":"<p>The quasi-biennial oscillation (QBO) is the dominate mode of variability in the tropical stratosphere and plays an important role in stratospheric dynamics and chemistry. The QBO is notably deficient in many climate models, including the Energy Exascale Earth System Model (E3SM) developed by the US Department of Energy. In this work, we refine the lower stratospheric vertical grid spacing from roughly 1 km to 500 m to facilitate more realistic equatorial wave activity in the lower stratosphere in E3SM version 2. The refinement results in a simulated QBO with a reasonable amplitude and easterly-westerly transition in both directions, but still has a longer period than observed, slower easterly downward propagation speed, and shallower vertical depth. Similar refinement in the multi-scale modeling framework configuration of E3SM yields similar improvements. By analyzing the forcing contributions from different wave types, we find that most of the QBO forcing still comes from parameterized gravity wave drag from convection. The improved QBO forcing contributions from resolved waves, especially equatorial Kelvin waves and resolved small scale waves, can be attributed to the grid refinement.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004473","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004473","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The quasi-biennial oscillation (QBO) is the dominate mode of variability in the tropical stratosphere and plays an important role in stratospheric dynamics and chemistry. The QBO is notably deficient in many climate models, including the Energy Exascale Earth System Model (E3SM) developed by the US Department of Energy. In this work, we refine the lower stratospheric vertical grid spacing from roughly 1 km to 500 m to facilitate more realistic equatorial wave activity in the lower stratosphere in E3SM version 2. The refinement results in a simulated QBO with a reasonable amplitude and easterly-westerly transition in both directions, but still has a longer period than observed, slower easterly downward propagation speed, and shallower vertical depth. Similar refinement in the multi-scale modeling framework configuration of E3SM yields similar improvements. By analyzing the forcing contributions from different wave types, we find that most of the QBO forcing still comes from parameterized gravity wave drag from convection. The improved QBO forcing contributions from resolved waves, especially equatorial Kelvin waves and resolved small scale waves, can be attributed to the grid refinement.

Abstract Image

E3SMv2中垂直网格精化改进分解波QBO强迫
准两年生振荡(QBO)是热带平流层的主要变率模式,在平流层动力学和化学中起着重要作用。QBO在许多气候模型上存在明显缺陷,包括美国能源部开发的能源百亿亿次地球系统模型(E3SM)。在这项工作中,我们将平流层下层垂直网格间距从大约1 km细化到500 m,以促进E3SM版本2中更真实的平流层下层赤道波活动。改进后的模拟QBO振幅合理,在两个方向上都有东西偏西过渡,但周期仍比观测值长,向东向下传播速度较慢,垂直深度较浅。在E3SM的多尺度建模框架配置中也进行了类似的改进。通过分析不同波型对QBO的强迫贡献,我们发现大部分QBO强迫仍然来自对流的参数化重力波阻力。分辨波,特别是赤道开尔文波和分辨小尺度波对QBO强迫的贡献的提高可归因于网格的精化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信