Journal of Advances in Modeling Earth Systems最新文献

筛选
英文 中文
Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift 在 MOSAiC 完全漂移期间对北极边界层和云层进行标准化的每日高分辨率大尺度模拟
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-17 DOI: 10.1029/2024MS004296
N. Schnierstein, J. Chylik, M. D. Shupe, R. A. J. Neggers
{"title":"Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift","authors":"N. Schnierstein,&nbsp;J. Chylik,&nbsp;M. D. Shupe,&nbsp;R. A. J. Neggers","doi":"10.1029/2024MS004296","DOIUrl":"https://doi.org/10.1029/2024MS004296","url":null,"abstract":"<p>This study utilizes the wealth of observational data collected during the recent <i>Multidisciplinary drifting Observatory for the Study of Arctic Climate</i> (<i>MOSAiC</i>) drift experiment to constrain and evaluate close to two-hundred daily Large-Eddy Simulations (LES) of Arctic boundary layers and clouds at high resolutions. A standardized approach is adopted to tightly integrate field measurements into the experimental configuration. Covering the full drift represents a step forward from single-case LES studies, and allows for a robust assessment of model performance against independent data under a range of atmospheric conditions. A homogeneously forced domain is simulated in a Lagrangian frame of reference, initialized with radiosonde and value-added cloud profiles. Prescribed boundary conditions include various measured surface characteristics. Time-constant composite forcing is applied, primarily consisting of subsidence rates sampled from reanalysis data. The simulations run for 3 hours, allowing turbulence and clouds to spin up while still facilitating direct comparison to <i>MOSAiC</i> data. Key aspects such as the vertical thermodynamic structure, cloud properties, and surface energy fluxes are well reproduced and maintained. The model captures the bimodal distribution of atmospheric states that is typical of Arctic climate. Selected days are investigated more closely to assess the model's skill in maintaining the observed boundary layer structure. The sensitivity to various aspects of the experimental configuration and model physics is tested. The model input and output are available to the scientific community, supplementing the <i>MOSAiC</i> data archive. The close agreement with observed meteorology justifies the use of LES for gaining further insight into Arctic boundary layer processes and their role in Arctic climate change.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004296","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Simple Model for the Emergence of Relaxation-Oscillator Convection 弛豫-振子对流出现的简单模型
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-15 DOI: 10.1029/2024MS004439
F. E. Spaulding-Astudillo, J. L. Mitchell
{"title":"A Simple Model for the Emergence of Relaxation-Oscillator Convection","authors":"F. E. Spaulding-Astudillo,&nbsp;J. L. Mitchell","doi":"10.1029/2024MS004439","DOIUrl":"https://doi.org/10.1029/2024MS004439","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Earth's tropics are characterized by quasi-steady precipitation with small oscillations about a mean value, which has led to the hypothesis that moist convection is in a state of quasi-equilibrium (QE). In contrast, very warm simulations of Earth's tropical convection are characterized by relaxation-oscillator-like (RO) precipitation, with short-lived convective storms and torrential rainfall forming and dissipating at regular intervals with little to no precipitation in between. We develop a model of moist convection by combining a zero-buoyancy model of bulk-plume convection with a QE heat engine model, and we use it to show that QE is violated at high surface temperatures. We hypothesize that the RO state emerges when the equilibrium condition of the convective heat engine is violated, that is, when the heating rate times a thermodynamic efficiency exceeds the rate at which work can be performed. We test our hypothesis against one- and three-dimensional numerical simulations and find that it accurately predicts the onset of RO convection. The proposed mechanism for RO emergence from QE breakdown is agnostic of the condensable, and can be applied to any planetary atmosphere undergoing moist convection. To date, RO states have only been demonstrated in three-dimensional convection-resolving simulations, which has made it seem that the physics of the RO state requires simulations that can explicitly resolve the three-dimensional interaction of cloudy plumes and their environment. We demonstrate that RO states also exist in single-column simulations of radiative-convective equilibrium with parameterized convection, albeit in a different surface temperature range and with much longer storm-free intervals.</p>\u0000 </section>\u0000 </div>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization 混合机器学习参数化中的诱导闭合在线学习
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-14 DOI: 10.1029/2024MS004485
Costa Christopoulos, Ignacio Lopez-Gomez, Tom Beucler, Yair Cohen, Charles Kawczynski, Oliver R. A. Dunbar, Tapio Schneider
{"title":"Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization","authors":"Costa Christopoulos,&nbsp;Ignacio Lopez-Gomez,&nbsp;Tom Beucler,&nbsp;Yair Cohen,&nbsp;Charles Kawczynski,&nbsp;Oliver R. A. Dunbar,&nbsp;Tapio Schneider","doi":"10.1029/2024MS004485","DOIUrl":"https://doi.org/10.1029/2024MS004485","url":null,"abstract":"<p>This work integrates machine learning into an atmospheric parameterization to target uncertain mixing processes while maintaining interpretable, predictive, and well-established physical equations. We adopt an eddy-diffusivity mass-flux (EDMF) parameterization for the unified modeling of various convective and turbulent regimes. To avoid drift and instability that plague offline-trained machine learning parameterizations that are subsequently coupled with climate models, we frame learning as an inverse problem: Data-driven models are embedded within the EDMF parameterization and trained online in a one-dimensional vertical global climate model (GCM) column. Training is performed against output from large-eddy simulations (LES) forced with GCM-simulated large-scale conditions in the Pacific. Rather than optimizing subgrid-scale tendencies, our framework directly targets climate variables of interest, such as the vertical profiles of entropy and liquid water path. Specifically, we use ensemble Kalman inversion to simultaneously calibrate both the EDMF parameters and the parameters governing data-driven lateral mixing rates. The calibrated parameterization outperforms existing EDMF schemes, particularly in tropical and subtropical locations of the present climate, and maintains high fidelity in simulating shallow cumulus and stratocumulus regimes under increased sea surface temperatures from AMIP4K experiments. The results showcase the advantage of physically constraining data-driven models and directly targeting relevant variables through online learning to build robust and stable machine learning parameterizations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Refined Zero-Buoyancy Plume Model for Large-Scale Atmospheric Profiles and Anvil Clouds in Radiative-Convective Equilibrium 辐射对流平衡状态下大尺度大气剖面和砧云的改进型零浮力羽流模型
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-13 DOI: 10.1029/2023MS004050
Zeyuan Hu, Nadir Jeevanjee, Zhiming Kuang
{"title":"A Refined Zero-Buoyancy Plume Model for Large-Scale Atmospheric Profiles and Anvil Clouds in Radiative-Convective Equilibrium","authors":"Zeyuan Hu,&nbsp;Nadir Jeevanjee,&nbsp;Zhiming Kuang","doi":"10.1029/2023MS004050","DOIUrl":"https://doi.org/10.1029/2023MS004050","url":null,"abstract":"<p>A simple analytical model, the zero-buoyancy plume (ZBP) model, has been proposed to understand how small-scale processes such as plume-environment mixing and evaporation affect the steady-state structure of the atmosphere. In this study, we refine the ZBP model to achieve self-consistent analytical solutions for convective mass flux, addressing the inconsistencies in previous solutions. Our refined ZBP model reveals that increasing plume-environment mixing can increase upper-troposphere mass flux through two pathways: increased cloud evaporation or reduced atmospheric stability. To validate these findings, we conducted small-domain convection-permitting Radiative-Convective Equilibrium simulations with horizontal resolutions ranging from 4 km to 125 m. As a proxy for plume-environment mixing strength, the diagnosed entrainment rate increases with finer resolution. Consistent with a previous study, we observed that both anvil cloud fraction and upper-troposphere mass flux increase with higher resolution. Analysis of the clear-sky energy balance in the simulations with two different microphysics schemes identified both pathways proposed by the ZBP model. The dominant pathway depends on the relative strengths of evaporation cooling and radiative cooling in the environment. Our work provides a refined simple framework for understanding the interaction between small-scale convective processes and large-scale atmospheric structure.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Decoupling Analysis for Assessing the Meteorological, Emission, and Chemical Influences on Fine Particle Pollution 用于评估细颗粒物污染的气象、排放和化学影响的定量解耦分析法
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-11 DOI: 10.1029/2024MS004261
Junhua Wang, Baozhu Ge, Lei Kong, Xueshun Chen, Jie Li, Keding Lu, Yayuan Dong, Hang Su, Zifa Wang, Yuanhang Zhang
{"title":"Quantitative Decoupling Analysis for Assessing the Meteorological, Emission, and Chemical Influences on Fine Particle Pollution","authors":"Junhua Wang,&nbsp;Baozhu Ge,&nbsp;Lei Kong,&nbsp;Xueshun Chen,&nbsp;Jie Li,&nbsp;Keding Lu,&nbsp;Yayuan Dong,&nbsp;Hang Su,&nbsp;Zifa Wang,&nbsp;Yuanhang Zhang","doi":"10.1029/2024MS004261","DOIUrl":"https://doi.org/10.1029/2024MS004261","url":null,"abstract":"<p>A comprehensive understanding of meteorological, emission and chemical influences on severe haze is essential for air pollution mitigation. However, the nonlinearity of the atmospheric system greatly hinders this understanding. In this study, we developed the quantitative decoupling analysis (QDA) method by applying the Factor Separation (FS) method into the model processes to quantify the effects of emissions (E), meteorology (M), chemical reactions (C), and their nonlinear interactions and impact on fine particulate matter (PM<sub>2.5</sub>) pollution. Taking a heavy-haze episode in Beijing as an example, we show that different from the integrated process rate (IPR) and the scenario analysis approach (SAA) in previous studies, the QDA method explicitly demonstrate the nonlinear effects by decomposing the variation of PM<sub>2.5</sub> concentration into individual contributions of <i>E</i>, <i>M</i> and <i>C</i> terms as well as the contributions from interactions among these processes. Results showed that <i>M</i> dominated the hourly fluctuation of the PM<sub>2.5</sub> concentration. The <i>C</i> terms increase with increasing the level of haze, reaching maximum (0.37 μg <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>·</mo>\u0000 </mrow>\u0000 <annotation> $mathit{cdot }$</annotation>\u0000 </semantics></math> m<sup>−3</sup> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>·</mo>\u0000 </mrow>\u0000 <annotation> $mathit{cdot }$</annotation>\u0000 </semantics></math> h<sup>−1</sup>) at the maintenance stage. Moreover, our method reveals that there are non-negligible non-linear effects of meteorological, emission, and chemical processes during pollution stage, with the mean accounting for 50% of the increase in PM<sub>2.5</sub> concentrations, which is often ignored in the current air pollution control strategies. This study highlights that the QDA approach can be used to gain insight into the formation of heavy pollution, and to identify uncertainty in numerical models.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scale- and Variable-Dependent Localization for 3DEnVar Data Assimilation in the Rapid Refresh Forecast System 快速刷新预报系统中 3DEnVar 数据同化的尺度和变量定位
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-09 DOI: 10.1029/2023MS004098
Sho Yokota, Jacob R. Carley, Ting Lei, Shun Liu, Daryl T. Kleist, Yongming Wang, Xuguang Wang
{"title":"Scale- and Variable-Dependent Localization for 3DEnVar Data Assimilation in the Rapid Refresh Forecast System","authors":"Sho Yokota,&nbsp;Jacob R. Carley,&nbsp;Ting Lei,&nbsp;Shun Liu,&nbsp;Daryl T. Kleist,&nbsp;Yongming Wang,&nbsp;Xuguang Wang","doi":"10.1029/2023MS004098","DOIUrl":"https://doi.org/10.1029/2023MS004098","url":null,"abstract":"<p>This study demonstrates the advantages of scale- and variable-dependent localization (SDL and VDL) on three-dimensional ensemble variational data assimilation of the hourly-updated high-resolution regional forecast system, the Rapid Refresh Forecast System (RRFS). SDL and VDL apply different localization radii for each spatial scale and variable, respectively, by extended control vectors. Single-observation assimilation tests and cycling experiments with RRFS indicated that SDL can enlarge the localization radius without increasing the sampling error caused by the small ensemble size and decreased associated imbalance of the analysis field, which was effective at decreasing the bias of temperature and humidity forecasts. Moreover, simultaneous assimilation of conventional and radar reflectivity data with VDL, where a smaller localization radius was applied only for hydrometeors and vertical wind, improved precipitation forecasts without introducing noisy analysis increments. Statistical verification showed that these impacts contributed to forecast error reduction, especially for low-level temperature and heavy precipitation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004098","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precipitation Extremes and Their Modulation by Convective Organization in RCEMIP RCEMIP 中的极端降水量及其对流组织的调节作用
IF 4.4 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2024-11-09 DOI: 10.1029/2024MS004535
Graham L. O’Donnell, Allison A. Wing
{"title":"Precipitation Extremes and Their Modulation by Convective Organization in RCEMIP","authors":"Graham L. O’Donnell,&nbsp;Allison A. Wing","doi":"10.1029/2024MS004535","DOIUrl":"https://doi.org/10.1029/2024MS004535","url":null,"abstract":"<p>We examine the influence of convective organization on extreme tropical precipitation events using model simulation data from the Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP). At a given SST, simulations with convective organization have more intense precipitation extremes than those without it at all scales, including instantaneous precipitation at the grid resolution (3 km). Across large-domain simulations with convective organization, models with explicit convection exhibit better agreement in the response of extreme precipitation rates to warming than those with parameterized convection. Among models with explicit convection, deviations from the Clausius-Clapeyron scaling of precipitation extremes with warming are correlated with changes in organization, especially on large spatiotemporal scales. Though the RCEMIP ensemble is nearly evenly split between CRMs which become more and less organized with warming, most of the models which show increased organization with warming also allow super-CC scaling of precipitation extremes. We also apply an established precipitation extremes scaling to understand changes in the extreme condensation events leading to extreme precipitation. Increased organization leads to greater increases in precipitation extremes by enhancing both the dynamic and implied efficiency contributions. We link these contributions to environmental variables modified by the presence of organization and suggest that increases in moisture in the aggregated region may be responsible for enhancing both convective updraft area fraction and precipitation efficiency. By leveraging a controlled intercomparison of models with both explicit and parameterized convection, this work provides strong evidence for the amplification of tropical precipitation extremes and their response to warming by convective organization.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 11","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004535","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Teardrop and Parabolic Lens Yield Curves for Viscous-Plastic Sea Ice Models: New Constitutive Equations and Failure Angles 粘塑性海冰模型的泪滴和抛物透镜屈服曲线:新的本构方程和破坏角
IF 6.8 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2023-09-02 DOI: 10.1029/2023MS003613
Damien Ringeisen, Martin Losch, L. Bruno Tremblay
{"title":"Teardrop and Parabolic Lens Yield Curves for Viscous-Plastic Sea Ice Models: New Constitutive Equations and Failure Angles","authors":"Damien Ringeisen,&nbsp;Martin Losch,&nbsp;L. Bruno Tremblay","doi":"10.1029/2023MS003613","DOIUrl":"https://doi.org/10.1029/2023MS003613","url":null,"abstract":"<p>Most viscous-plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non-symmetrical shape, a Coulombic behavior for the low-medium compressive stress, and a continuous transition to the ridging-dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non-symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni-axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high-resolution pan-Arctic sea ice simulations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 9","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6042063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method for Estimating Global Subgrid-Scale Orographic Gravity-Wave Temperature Perturbations in Chemistry-Climate Models 化学-气候模式中全球亚网格尺度地形重力波温度扰动的估计方法
IF 6.8 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2023-08-31 DOI: 10.1029/2022MS003505
M. Weimer, C. Wilka, D. E. Kinnison, R. R. Garcia, J. T. Bacmeister, M. J. Alexander, A. D?rnbrack, S. Solomon
{"title":"A Method for Estimating Global Subgrid-Scale Orographic Gravity-Wave Temperature Perturbations in Chemistry-Climate Models","authors":"M. Weimer,&nbsp;C. Wilka,&nbsp;D. E. Kinnison,&nbsp;R. R. Garcia,&nbsp;J. T. Bacmeister,&nbsp;M. J. Alexander,&nbsp;A. D?rnbrack,&nbsp;S. Solomon","doi":"10.1029/2022MS003505","DOIUrl":"https://doi.org/10.1029/2022MS003505","url":null,"abstract":"<p>Many chemical processes depend non-linearly on temperature. Gravity-wave-induced temperature perturbations have been shown to affect atmospheric chemistry, but accounting for this process in chemistry-climate models has been a challenge because many gravity waves have scales smaller than the typical model resolution. Here, we present a method to account for subgrid-scale orographic gravity-wave-induced temperature perturbations on the global scale for the Whole Atmosphere Community Climate Model. Temperature perturbation amplitudes consistent with the model's subgrid-scale gravity wave parameterization are derived and then used as a sinusoidal temperature perturbation in the model's chemistry solver. Because of limitations in the parameterization, we explore scaling of between 0.6 and 1 based on comparisons to altitude-dependent distributions of satellite and reanalysis data, where we discuss uncertainties. We probe the impact on the chemistry from the grid-point to global scales, and show that the parameterization is able to represent mountain wave events as reported by previous literature. The gravity waves for example, lead to increased surface area densities of stratospheric aerosols. This increases chlorine activation, with impacts on the associated chemical composition. We obtain large local changes in some chemical species (e.g., active chlorine, NO<sub>x</sub>, N<sub>2</sub>O<sub>5</sub>) which are likely to be important for comparisons to airborne or satellite observations, but the changes to ozone loss are more modest. This approach enables the chemistry-climate modeling community to account for subgrid-scale gravity wave temperature perturbations interactively, consistent with the internal parameterizations and are expected to yield more realistic interactions and better representation of the chemistry.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 9","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5886566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Model Error Correction With Neural Networks in the Incremental 4D-Var Framework 增量4D-Var框架下的神经网络在线模型误差校正
IF 6.8 2区 地球科学
Journal of Advances in Modeling Earth Systems Pub Date : 2023-08-29 DOI: 10.1029/2022MS003474
Alban Farchi, Marcin Chrust, Marc Bocquet, Patrick Laloyaux, Massimo Bonavita
{"title":"Online Model Error Correction With Neural Networks in the Incremental 4D-Var Framework","authors":"Alban Farchi,&nbsp;Marcin Chrust,&nbsp;Marc Bocquet,&nbsp;Patrick Laloyaux,&nbsp;Massimo Bonavita","doi":"10.1029/2022MS003474","DOIUrl":"https://doi.org/10.1029/2022MS003474","url":null,"abstract":"<p>Recent studies have demonstrated that it is possible to combine machine learning with data assimilation to reconstruct the dynamics of a physical model partially and imperfectly observed. The surrogate model can be defined as an hybrid combination where a physical model based on prior knowledge is enhanced with a statistical model estimated by a neural network (NN). The training of the NN is typically done offline, once a large enough data set of model state estimates is available. By contrast, with online approaches the surrogate model is improved each time a new system state estimate is computed. Online approaches naturally fit the sequential framework encountered in geosciences where new observations become available with time. In a recent methodology paper, we have developed a new weak-constraint 4D-Var formulation which can be used to train a NN for online model error correction. In the present article, we develop a simplified version of that method, in the incremental 4D-Var framework adopted by most operational weather centers. The simplified method is implemented in the European Center for Medium-Range Weather Forecasts (ECMWF) Object-Oriented Prediction System, with the help of a newly developed Fortran NN library, and tested with a two-layer two-dimensional quasi geostrophic model. The results confirm that online learning is effective and yields a more accurate model error correction than offline learning. Finally, the simplified method is compatible with future applications to state-of-the-art models such as the ECMWF Integrated Forecasting System.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 9","pages":""},"PeriodicalIF":6.8,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003474","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5875895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信