还原气相异戊二烯氧化机理的演化优化

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Arijit Chakraborty, Forwood Cloud Wiser, Siddhartha Sen, Daniel M. Westervelt, Reese Carter, V. Faye McNeill, Venkat Venkatasubramanian
{"title":"还原气相异戊二烯氧化机理的演化优化","authors":"Arijit Chakraborty,&nbsp;Forwood Cloud Wiser,&nbsp;Siddhartha Sen,&nbsp;Daniel M. Westervelt,&nbsp;Reese Carter,&nbsp;V. Faye McNeill,&nbsp;Venkat Venkatasubramanian","doi":"10.1029/2024MS004511","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric chemistry is highly complex, and significant reductions in the size of the chemical mechanism are required to simulate the atmosphere. One of the bottlenecks in creating reduced models is identifying optimal numerical parameters. This process has been difficult to automate, and often relies on manual testing. In this work, we present the application of particle swarm optimization (PSO) toward optimizing the stoichiometric coefficients and rate constants of a reduced isoprene atmospheric oxidation mechanism. Using PSO, we are able to achieve up to 28.8% improvement in our error metric when compared to a manually tuned reduced mechanism, leading to a significantly optimized final mechanism. This work demonstrates PSO as a promising and thus far underutilized tool for atmospheric chemical mechanism development.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004511","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Optimization of the Reduced Gas-Phase Isoprene Oxidation Mechanism\",\"authors\":\"Arijit Chakraborty,&nbsp;Forwood Cloud Wiser,&nbsp;Siddhartha Sen,&nbsp;Daniel M. Westervelt,&nbsp;Reese Carter,&nbsp;V. Faye McNeill,&nbsp;Venkat Venkatasubramanian\",\"doi\":\"10.1029/2024MS004511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Atmospheric chemistry is highly complex, and significant reductions in the size of the chemical mechanism are required to simulate the atmosphere. One of the bottlenecks in creating reduced models is identifying optimal numerical parameters. This process has been difficult to automate, and often relies on manual testing. In this work, we present the application of particle swarm optimization (PSO) toward optimizing the stoichiometric coefficients and rate constants of a reduced isoprene atmospheric oxidation mechanism. Using PSO, we are able to achieve up to 28.8% improvement in our error metric when compared to a manually tuned reduced mechanism, leading to a significantly optimized final mechanism. This work demonstrates PSO as a promising and thus far underutilized tool for atmospheric chemical mechanism development.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004511\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004511\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004511","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气化学是高度复杂的,为了模拟大气,需要大大减少化学机制的规模。创建简化模型的瓶颈之一是确定最佳数值参数。这个过程很难自动化,并且经常依赖于手工测试。在这项工作中,我们提出了粒子群优化(PSO)的应用,以优化化学计量系数和速率常数的还原异戊二烯的大气氧化机制。使用PSO,与手动调优的简化机制相比,我们能够在误差度量上实现高达28.8%的改进,从而显著优化最终机制。这项工作表明PSO是一个有前途的,迄今尚未充分利用的大气化学机制开发工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolutionary Optimization of the Reduced Gas-Phase Isoprene Oxidation Mechanism

Evolutionary Optimization of the Reduced Gas-Phase Isoprene Oxidation Mechanism

Atmospheric chemistry is highly complex, and significant reductions in the size of the chemical mechanism are required to simulate the atmosphere. One of the bottlenecks in creating reduced models is identifying optimal numerical parameters. This process has been difficult to automate, and often relies on manual testing. In this work, we present the application of particle swarm optimization (PSO) toward optimizing the stoichiometric coefficients and rate constants of a reduced isoprene atmospheric oxidation mechanism. Using PSO, we are able to achieve up to 28.8% improvement in our error metric when compared to a manually tuned reduced mechanism, leading to a significantly optimized final mechanism. This work demonstrates PSO as a promising and thus far underutilized tool for atmospheric chemical mechanism development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信