Moist Energy Constraints on Surface Temperature Variance Under Climate Warming

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Bowen Ge, Gang Chen, Jian Lu, Wenyu Zhou
{"title":"Moist Energy Constraints on Surface Temperature Variance Under Climate Warming","authors":"Bowen Ge,&nbsp;Gang Chen,&nbsp;Jian Lu,&nbsp;Wenyu Zhou","doi":"10.1029/2024MS004612","DOIUrl":null,"url":null,"abstract":"<p>Understanding the factors controlling surface temperature variance is crucial for predicting temperature extremes. Previous investigations have examined individual impacts of temperature advection and surface turbulent fluxes on temperature fluctuations. Here, we explore the constraints on temperature variance from the moist static energy (MSE) balance and introduce a new scaling relation that connects the generation of temperature variance through moist energy transport with its dissipation due to the net energetic forcing of the atmosphere. This theory is evaluated in an idealized aquaplanet model. We find that surface temperature variance is influenced by eddy (sensible) heat flux, MSE gradient, and the Clausius-Clapeyron relation for evaporative cooling. Under global warming, the reduced temperature variance in the aquaplanet model is dominated by the weakening in eddy heat flux, but it is also affected by changes in evaporative cooling and MSE gradient, which may be more important in realistic, moisture-limited regions over land.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004612","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the factors controlling surface temperature variance is crucial for predicting temperature extremes. Previous investigations have examined individual impacts of temperature advection and surface turbulent fluxes on temperature fluctuations. Here, we explore the constraints on temperature variance from the moist static energy (MSE) balance and introduce a new scaling relation that connects the generation of temperature variance through moist energy transport with its dissipation due to the net energetic forcing of the atmosphere. This theory is evaluated in an idealized aquaplanet model. We find that surface temperature variance is influenced by eddy (sensible) heat flux, MSE gradient, and the Clausius-Clapeyron relation for evaporative cooling. Under global warming, the reduced temperature variance in the aquaplanet model is dominated by the weakening in eddy heat flux, but it is also affected by changes in evaporative cooling and MSE gradient, which may be more important in realistic, moisture-limited regions over land.

气候变暖条件下地表温度变化的湿能约束
了解控制地表温度变化的因素对于预测极端温度至关重要。以前的研究考察了温度平流和地表湍流通量对温度波动的个别影响。本文探讨了湿静态能平衡对温度变化的约束,并引入了一种新的标度关系,将湿能量输运产生的温度变化与大气净能强迫引起的温度变化耗散联系起来。这个理论在一个理想的水行星模型中得到了评价。研究发现,地表温度变化受涡旋(感)热通量、MSE梯度和蒸发冷却的Clausius-Clapeyron关系的影响。在全球变暖背景下,水行星模式温度变化的减小主要受涡旋热通量减弱的影响,但也受到蒸发冷却和MSE梯度变化的影响,这在现实的陆地上水分有限的地区可能更为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信