随机网格扰动与位置不确定性框架之间的联系

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
S. Clement, E. Blayo, L. Debreu, J.-M. Brankart, P. Brasseur, L. Li, E. Mémin
{"title":"随机网格扰动与位置不确定性框架之间的联系","authors":"S. Clement,&nbsp;E. Blayo,&nbsp;L. Debreu,&nbsp;J.-M. Brankart,&nbsp;P. Brasseur,&nbsp;L. Li,&nbsp;E. Mémin","doi":"10.1029/2024MS004528","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the relationship between a Stochastic Grid Perturbation (SGP) and Location Uncertainty (LU) in the context of ocean modeling. The LU formulation, which introduces random velocity fluctuations, has shown efficacy in organizing large-scale flow and replicating long-term statistical characteristics. SGP was created as a simpler approach which perturbs the computational grid for ensemble members, aiming to simulate small uncertainties in high-resolution predictability studies. We aim to clarify the link between SGP and LU. After introducing the LU formalism, we derive the SGP method and discuss its connection to LU. Correlated noise in time is introduced in the SGP method to preserve the structure of the original grid. A compensating advection term is shown to preserve LU properties despite the latter correlated noise. Numerical experiments on a 3-layer Quasi-Geostrophic model compare various SGP implementations with an explicit LU implementation, highlighting the importance of the compensating advection term to achieve strict equivalence.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004528","citationCount":"0","resultStr":"{\"title\":\"Link Between Stochastic Grid Perturbation and Location Uncertainty Framework\",\"authors\":\"S. Clement,&nbsp;E. Blayo,&nbsp;L. Debreu,&nbsp;J.-M. Brankart,&nbsp;P. Brasseur,&nbsp;L. Li,&nbsp;E. Mémin\",\"doi\":\"10.1029/2024MS004528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the relationship between a Stochastic Grid Perturbation (SGP) and Location Uncertainty (LU) in the context of ocean modeling. The LU formulation, which introduces random velocity fluctuations, has shown efficacy in organizing large-scale flow and replicating long-term statistical characteristics. SGP was created as a simpler approach which perturbs the computational grid for ensemble members, aiming to simulate small uncertainties in high-resolution predictability studies. We aim to clarify the link between SGP and LU. After introducing the LU formalism, we derive the SGP method and discuss its connection to LU. Correlated noise in time is introduced in the SGP method to preserve the structure of the original grid. A compensating advection term is shown to preserve LU properties despite the latter correlated noise. Numerical experiments on a 3-layer Quasi-Geostrophic model compare various SGP implementations with an explicit LU implementation, highlighting the importance of the compensating advection term to achieve strict equivalence.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004528\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004528\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004528","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了海洋模拟中随机网格扰动(SGP)与位置不确定性(LU)之间的关系。引入随机速度波动的LU公式在组织大规模流动和复制长期统计特征方面显示出有效性。SGP是作为一种更简单的方法创建的,它扰动了集成成员的计算网格,旨在模拟高分辨率可预测性研究中的小不确定性。我们的目的是澄清SGP和LU之间的联系。在引入逻辑单元的形式化之后,我们推导出了SGP方法,并讨论了它与逻辑单元的联系。在SGP方法中引入了时间相关噪声,以保持原始网格的结构。补偿平流项显示,尽管后者的相关噪声保持LU性质。在三层准地转模型上的数值实验比较了各种SGP实现与显式LU实现,强调了补偿平流项对实现严格等效的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Link Between Stochastic Grid Perturbation and Location Uncertainty Framework

Link Between Stochastic Grid Perturbation and Location Uncertainty Framework

This paper investigates the relationship between a Stochastic Grid Perturbation (SGP) and Location Uncertainty (LU) in the context of ocean modeling. The LU formulation, which introduces random velocity fluctuations, has shown efficacy in organizing large-scale flow and replicating long-term statistical characteristics. SGP was created as a simpler approach which perturbs the computational grid for ensemble members, aiming to simulate small uncertainties in high-resolution predictability studies. We aim to clarify the link between SGP and LU. After introducing the LU formalism, we derive the SGP method and discuss its connection to LU. Correlated noise in time is introduced in the SGP method to preserve the structure of the original grid. A compensating advection term is shown to preserve LU properties despite the latter correlated noise. Numerical experiments on a 3-layer Quasi-Geostrophic model compare various SGP implementations with an explicit LU implementation, highlighting the importance of the compensating advection term to achieve strict equivalence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信