International Journal of Pharmaceutics: X最新文献

筛选
英文 中文
Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia 含有斯潘立德的纳米凝胶是一种用于皮肤输送比马前列素的合理平台,在雄激素性脱发中具有优异的皮肤沉积和生发效果
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-26 DOI: 10.1016/j.ijpx.2024.100240
Bjad K. Almutairy , El-Sayed Khafagy , Mohammed F. Aldawsari , Abdullah Alshetaili , Hadil Faris Alotaibi , Amr Selim Abu Lila
{"title":"Spanlastic-laden nanogel as a plausible platform for dermal delivery of bimatoprost with superior cutaneous deposition and hair regrowth efficiency in androgenic alopecia","authors":"Bjad K. Almutairy ,&nbsp;El-Sayed Khafagy ,&nbsp;Mohammed F. Aldawsari ,&nbsp;Abdullah Alshetaili ,&nbsp;Hadil Faris Alotaibi ,&nbsp;Amr Selim Abu Lila","doi":"10.1016/j.ijpx.2024.100240","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100240","url":null,"abstract":"<div><p>Bimatoprost (BIM) is a prostaglandin F2α analogs originally approved for the treatment of glaucoma and ocular hypertension. Recent studies have highlighted its potential to boost hair growth. The objective of this investigation is to challenge the potential of spanlastics (SLs) as a surfactant-based vesicular system for promoting the cutaneous delivery of BIM for the management of alopecia. BIM-loaded spanlastics (BIM-SLs), composed of Span as the main vesicle component and Tween as the edge activator, were fabricated by ethanol injection method. The formulated BIM-SLs were optimized by 2<sup>3</sup> full factorial design. The optimized formula (F1) was characterized for entrapment efficiency, surface charge, vesicle size, and drug release after 12 h (Q<sub>12h</sub>). The optimized formula (F1) exhibited high drug entrapment efficiency (83.1 ± 2.1%), appropriate zeta potential (−19.9 ± 2.1 mV), Q<sub>12h</sub> of 71.3 ± 5.3%, and a vesicle size of 364.2 ± 15.8 nm, which favored their cutaneous accumulation. In addition, <em>ex-vivo</em> skin deposition studies revealed that entrapping BIM within spanlastic-based nanogel (BIM-SLG) augmented the dermal deposition of BIM, compared to naïve BIM gel. Furthermore, <em>in vivo</em> studies verified the efficacy of spanlastic vesicles to boost the cutaneous accumulation of BIM compared to naive BIM gel; the AUC<sub>0-12h</sub> of BIM-SLG was 888.05 ± 72.31 μg/mL.h, which was twice as high as that of naïve BIM gel (AUC<sub>0-12h</sub> 382.86 ± 41.12 μg/mL.h). Intriguingly, BIM-SLG outperforms both naïve BIM gel and commercial minoxidil formulations in stimulating hair regrowth in an androgenetic alopecia mouse model. Collectively, spanlastic vesicles might be a potential platform for promoting the dermal delivery of BIM in managing alopecia.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000124/pdfft?md5=31c97412f1f763f28d6a16d81b46b73d&pid=1-s2.0-S2590156724000124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal 卤夫酮引导的纳米局部治疗:纳米热敏水凝胶治疗犬乳腺癌术后转移性疤痕切除术
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-26 DOI: 10.1016/j.ijpx.2024.100241
Runan Zuo , Lingqing Kong , Wanjun Pang , Shanxiang Jiang
{"title":"Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal","authors":"Runan Zuo ,&nbsp;Lingqing Kong ,&nbsp;Wanjun Pang ,&nbsp;Shanxiang Jiang","doi":"10.1016/j.ijpx.2024.100241","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100241","url":null,"abstract":"<div><p>In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and <em>in vitro</em> release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its <em>in vivo</em> anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and <em>zeta</em> potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of <em>in vivo</em> anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000136/pdfft?md5=9b24978aa3117713504a565872d6dea9&pid=1-s2.0-S2590156724000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140327644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-invasive caffeinated-nanovesicles as adipocytes-targeted therapy for cellulite and localized fats 无创咖啡因纳米囊泡作为脂肪细胞靶向疗法治疗橘皮组织和局部脂肪
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-13 DOI: 10.1016/j.ijpx.2024.100236
Lobna M. Khalil , Wessam M. El-Refaie , Yosra S.R. Elnaggar , Hamdy Abdelkader , Adel Al Fatease , Ossama Y. Abdallah
{"title":"Non-invasive caffeinated-nanovesicles as adipocytes-targeted therapy for cellulite and localized fats","authors":"Lobna M. Khalil ,&nbsp;Wessam M. El-Refaie ,&nbsp;Yosra S.R. Elnaggar ,&nbsp;Hamdy Abdelkader ,&nbsp;Adel Al Fatease ,&nbsp;Ossama Y. Abdallah","doi":"10.1016/j.ijpx.2024.100236","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100236","url":null,"abstract":"<div><p>Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited.</p><p>This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease (<em>P</em> = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000082/pdfft?md5=965207ea439ea05c29d9d734c2f11dba&pid=1-s2.0-S2590156724000082-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A network of regulatory innovations to improve FDA quality assessments of human drug applications 监管创新网络,改善 FDA 对人类药物申请的质量评估
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-11 DOI: 10.1016/j.ijpx.2024.100239
Russie Tran, Grace Fraser, Adam C. Fisher, Sau L. Lee, Ashley Boam, Stelios Tsinontides, Jennifer Maguire, Lawrence X. Yu, Susan Rosencrance, Steven Kozlowski, Don Henry
{"title":"A network of regulatory innovations to improve FDA quality assessments of human drug applications","authors":"Russie Tran,&nbsp;Grace Fraser,&nbsp;Adam C. Fisher,&nbsp;Sau L. Lee,&nbsp;Ashley Boam,&nbsp;Stelios Tsinontides,&nbsp;Jennifer Maguire,&nbsp;Lawrence X. Yu,&nbsp;Susan Rosencrance,&nbsp;Steven Kozlowski,&nbsp;Don Henry","doi":"10.1016/j.ijpx.2024.100239","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100239","url":null,"abstract":"<div><p>A network of regulatory innovations brings a holistic approach to improving the submission, assessment, and lifecycle management of pharmaceutical quality information in the U.S. This dedicated effort in the FDA’s Center for Drug Evaluation and Research (CDER) aims to enhance the quality assessment of submissions for new drugs, generic drugs, and biological products including biosimilars. These regulatory innovations include developing or contributing: (i) the Knowledge-Aided Assessment and Structured Application (KASA), (ii) a new common technical document for quality (ICH M4Q(R2)), (iii) structured data on Pharmaceutical Quality/Chemistry, Manufacturing and Controls (PQ/CMC), (iv) Integrated Quality Assessment (IQA), (v) the Quality Surveillance Dashboard (QSD), and (vi) the Established Conditions tool from the ICH Q12 guideline. The innovations collectively drive CDER toward a more coordinated, effective, and efficient quality assessment. Improvements are made possible by structured regulatory submissions, a systems approach to quality risk management, and data-driven decisions based on science, risk, and effective knowledge management. The intended result is better availability of quality medicines for U.S. patients.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000112/pdfft?md5=e8c8fe5fc89a8ee9a2360ed20920c21a&pid=1-s2.0-S2590156724000112-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells 评估用于治疗 HER2 阳性乳腺癌细胞的靶向 Palbociclib-Trastuzumab 负载智能 niosome 平台
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-11 DOI: 10.1016/j.ijpx.2024.100237
Shaghayegh Saharkhiz , Negar Nasri , Nazanin Naderi , Ghasem Dini , Saeid Shirzadi Ghalehshahi , Fateme Firoozbakht
{"title":"Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells","authors":"Shaghayegh Saharkhiz ,&nbsp;Negar Nasri ,&nbsp;Nazanin Naderi ,&nbsp;Ghasem Dini ,&nbsp;Saeid Shirzadi Ghalehshahi ,&nbsp;Fateme Firoozbakht","doi":"10.1016/j.ijpx.2024.100237","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100237","url":null,"abstract":"<div><p>In this study, we present a targeted and pH-sensitive niosomal (pHSN) formulation, incorporating quantum dot (QD)-labeled Trastuzumab (Trz) molecules for the specific delivery of Palbociclib (Pal) to cells overexpressing human epidermal growth factor receptor 2 (HER2). FTIR analyses confirmed the successful preparation of the pHSNs and their bioconjugation. The labeled Trz-conjugated Pal-pHSNs (Trz-Pal-pHSNs) exhibited a size of approximately 170 nm, displaying a spherical shape with a neutral surface charge of −1.2 mV. Pal encapsulation reached ∼86%, and the release pattern followed a two-phase pH-dependent mechanism. MTT assessments demonstrated enhanced apoptosis induction, particularly in HER2-positive cells, by Trz-Pal-pHSNs. Fluorescence imaging further validated the internalization of particles into cells. In conclusion, Trz-Pal-pHSNs emerge as a promising platform for personalized medicine in the treatment of HER2-positive breast cancer.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000094/pdfft?md5=72f0b03793377c22e7fd9492588d41d1&pid=1-s2.0-S2590156724000094-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges 基于蛋白质的癌症纳米医学的合理前景:最新进展与挑战
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-11 DOI: 10.1016/j.ijpx.2024.100238
Zhechen Fan , Haroon Iqbal , Jiang Ni , Naveed Ullah Khan , Shahla Irshad , Anam Razzaq , Mohammad Y. Alfaifi , Serag Eldin I. Elbehairi , Ali A. Shati , Jianping Zhou , Hao Cheng
{"title":"Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges","authors":"Zhechen Fan ,&nbsp;Haroon Iqbal ,&nbsp;Jiang Ni ,&nbsp;Naveed Ullah Khan ,&nbsp;Shahla Irshad ,&nbsp;Anam Razzaq ,&nbsp;Mohammad Y. Alfaifi ,&nbsp;Serag Eldin I. Elbehairi ,&nbsp;Ali A. Shati ,&nbsp;Jianping Zhou ,&nbsp;Hao Cheng","doi":"10.1016/j.ijpx.2024.100238","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100238","url":null,"abstract":"<div><p>The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000100/pdfft?md5=2a1875e2e0561c02f64b4fb2ab03e865&pid=1-s2.0-S2590156724000100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140122571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-responsive chondroitin sulfate self-assembling nanoparticles for combination therapy in metastatic cancer cells 用于转移性癌细胞联合治疗的双响应硫酸软骨素自组装纳米粒子
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-03-05 DOI: 10.1016/j.ijpx.2024.100235
Ensieh Poursani , Giuseppe Cirillo , Manuela Curcio , Orazio Vittorio , Michele De Luca , Antonella Leggio , Fiore Pasquale Nicoletta , Francesca Iemma
{"title":"Dual-responsive chondroitin sulfate self-assembling nanoparticles for combination therapy in metastatic cancer cells","authors":"Ensieh Poursani ,&nbsp;Giuseppe Cirillo ,&nbsp;Manuela Curcio ,&nbsp;Orazio Vittorio ,&nbsp;Michele De Luca ,&nbsp;Antonella Leggio ,&nbsp;Fiore Pasquale Nicoletta ,&nbsp;Francesca Iemma","doi":"10.1016/j.ijpx.2024.100235","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100235","url":null,"abstract":"<div><p>In this study, we developed self-assembling nanoparticles (LCPs) able to trigger the release of Chlorambucil (Chl) and Doxorubicin (DOX) to MDA-MB-231 cells by exploiting the enzyme and redox signals. The DOX loaded LCPs was prepared by the self-assembly of two chondroitin sulphate (CS) derivatives, obtained by the covalent conjugation of Lipoic Acid (LA) and Chlorambucil (Chl) to the CS backbone. After the physic-chemical characterization of the conjugates by FT-IR, <sup>1</sup>H NMR, and determination of the critical aggregation concentration, spherical nanoparticles with mean hydrodynamic diameter of 45 nm (P.D.I. 0.24) and <em>Z</em>-potential of - 44 mV were obtained by water addition/solvent evaporation method. In vitro experiments for the release of Chl and DOX were performed in healthy and cancer cells, using a cell culture media to maintain the physiological intracellular conditions (pH 7.4) (and concentration of esterase and GSH. The results allowed the selective release of the payloads to be detected: Chl release of 0 and 41% were obtained after 2 h incubation in normal and in cancer cells respectively, while values of 35 (in healthy cells) and 60% (in cancer cells) were recorded for DOX release after 96 h. Finally, viability studies proved the ability of the newly proposed nanosystem to enhance the cytotoxic activity of the two drugs against cancer cells.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000070/pdfft?md5=625bb0fe8f8d17a646ce9861a6328e0a&pid=1-s2.0-S2590156724000070-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and validation of a custom-made system to measure transepithelial electrical impedance in human corneas preserved in active storage machine 设计和验证定制系统,测量保存在活性存储机中的人类角膜的经皮层电阻抗
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-02-09 DOI: 10.1016/j.ijpx.2024.100234
Marielle Mentek , Benjamin Peyret , Siwar Zouari , Sébastien Urbaniak , Jean-Marie Papillon , Emmanuel Crouzet , Chantal Perrache , Sophie Hodin , Xavier Delavenne , Zhiguo He , Philippe Gain , Gilles Thuret
{"title":"Design and validation of a custom-made system to measure transepithelial electrical impedance in human corneas preserved in active storage machine","authors":"Marielle Mentek ,&nbsp;Benjamin Peyret ,&nbsp;Siwar Zouari ,&nbsp;Sébastien Urbaniak ,&nbsp;Jean-Marie Papillon ,&nbsp;Emmanuel Crouzet ,&nbsp;Chantal Perrache ,&nbsp;Sophie Hodin ,&nbsp;Xavier Delavenne ,&nbsp;Zhiguo He ,&nbsp;Philippe Gain ,&nbsp;Gilles Thuret","doi":"10.1016/j.ijpx.2024.100234","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100234","url":null,"abstract":"<div><p>Corneal epithelial barrier represents one of the major limitations to ocular drug delivery and can be explored non-invasively through the evaluation of its electrical properties. Human corneas stored in active storage machine (ASM) could represent an interesting physiological model to explore transcorneal drug penetration. We designed a new system adapted to human corneas preserved in ASM to explore corneal epithelial barrier function ex-vivo. A bipolar set-up including Ag/AgCl electrodes adaptors to fit the corneal ASM and a dedicated software was designed and tested on freshly excised porcine corneas (<em>n</em> = 59) and human corneas stored 14 days in ASM (<em>n</em> = 6). Porcine corneas presented significant and proportional decrease in corneal impedance in response to increasing-size epithelial ulcerations and acute exposure to benzalkonium chloride (BAC) 0.01 and 0.05%. Human corneas stored 14 days in ASM presented a significant increase in corneal impedance associated with the restoration of a multi-layer epithelium and an enhanced expression of tight junctions markers zonula occludens 1, claudin 1 and occludin. These results support the relevance of the developed approach to pursue the exploration and development of human corneas stored in ASM as a physiological pharmacological model.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000069/pdfft?md5=1415dea1eb2579fd72e98a2f249aba2c&pid=1-s2.0-S2590156724000069-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colon targeting in rats, dogs and IBD patients with species-independent film coatings 在大鼠、狗和 IBD 患者中使用与物种无关的薄膜涂层进行结肠靶向治疗
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-02-08 DOI: 10.1016/j.ijpx.2024.100233
F. Ferraro , L.M. Sonnleitner , C. Neut , S. Mahieux , J. Verin , J. Siepmann , F. Siepmann
{"title":"Colon targeting in rats, dogs and IBD patients with species-independent film coatings","authors":"F. Ferraro ,&nbsp;L.M. Sonnleitner ,&nbsp;C. Neut ,&nbsp;S. Mahieux ,&nbsp;J. Verin ,&nbsp;J. Siepmann ,&nbsp;F. Siepmann","doi":"10.1016/j.ijpx.2024.100233","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100233","url":null,"abstract":"<div><p>Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ. Thus, the performance of this type of colon targeting system observed in animals might not be predictive for patients. The aim of this study was to limit this risk. Different polysaccharides were exposed to culture medium inoculated with fecal samples from IBD patients, healthy dogs and “IBD rats” (in which colonic inflammation was induced). Dynamic changes in the pH of the culture medium were used as an indicator for the proliferation of the bacteria and, thus, the potential of the polysaccharides to serve as their substrate. Fundamental differences were observed with respect to the extent of the pH variations as well as their species-dependency. The most promising polysaccharides were used to prepare polymeric film coatings surrounding 5-aminosaliciylic acid (5-ASA)-loaded starter cores. To limit premature polysaccharide dissolution/swelling in the upper gastro intestinal tract, ethylcellulose was also included in the film coatings. Drug release was monitored upon exposure to culture medium inoculated with fecal samples from IBD patients, healthy dogs and “IBD rats”. For reasons of comparison, also 5-ASA release in pure culture medium was measured. Most film coatings showed highly species-dependent drug release kinetics or limited colon targeting capacity. Interestingly, extracts from aloe vera and reishi (a mushroom) showed a promising potential for colon targeting in <em>all</em> species.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000057/pdfft?md5=c0b0a088fe205558dd451ddd92066b61&pid=1-s2.0-S2590156724000057-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139733356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy 开发和优化用于眼部控制给药的维达列汀固体脂质纳米颗粒:治疗糖尿病视网膜病变的有效方法
IF 4.7 2区 医学
International Journal of Pharmaceutics: X Pub Date : 2024-02-04 DOI: 10.1016/j.ijpx.2024.100232
Abd El hakim Ramadan , Mahmoud M.A. Elsayed , Amani Elsayed , Marwa A. Fouad , Mohamed S. Mohamed , Sangmin Lee , Reda A. Mahmoud , Shereen A. Sabry , Mohammed M. Ghoneim , Ahmed H.E. Hassan , Reham A. Abd Elkarim , Amany Belal , Ahmed A. El-Shenawy
{"title":"Development and optimization of vildagliptin solid lipid nanoparticles loaded ocuserts for controlled ocular delivery: A promising approach towards treating diabetic retinopathy","authors":"Abd El hakim Ramadan ,&nbsp;Mahmoud M.A. Elsayed ,&nbsp;Amani Elsayed ,&nbsp;Marwa A. Fouad ,&nbsp;Mohamed S. Mohamed ,&nbsp;Sangmin Lee ,&nbsp;Reda A. Mahmoud ,&nbsp;Shereen A. Sabry ,&nbsp;Mohammed M. Ghoneim ,&nbsp;Ahmed H.E. Hassan ,&nbsp;Reham A. Abd Elkarim ,&nbsp;Amany Belal ,&nbsp;Ahmed A. El-Shenawy","doi":"10.1016/j.ijpx.2024.100232","DOIUrl":"https://doi.org/10.1016/j.ijpx.2024.100232","url":null,"abstract":"<div><p>Diabetes mellitus (DM) is the most prevalent cause of diabetic retinopathy (DRP). DRP has been recognized for a long time as a microvascular disease. Many drugs were used to treat DRP, including vildagliptin (VLD). In addition to its hypoglycemic effect, VLD minimizes ocular inflammation and improves retinal blood flow for individuals with type 2 diabetes mellitus. Nevertheless, VLD can cause upper respiratory tract infections, diarrhea, nausea, hypoglycemia, and poor tolerability when taken orally regularly due to its high water solubility and permeability. Effective ocular administration of VLD is achieved using solid lipid nanoparticles (SLNPs), which improve corneal absorption, prolonged retention, and extended drug release. Ocuserts (OCUs) are sterile, long-acting ocular dosage forms that diminish the need for frequent dosing while improving residence time and stability. Therefore, this study intends to develop VLD solid lipid nanoparticle OCUs (VLD-SLNPs-OCUs) to circumvent the issues commonly associated with VLD. SLNPs were prepared using the double-emulsion/melt dispersion technique. The optimal formula has been implemented in OCUs. Optimization and development of VLD-SLNPs-OCUs were performed using a Box-Behnken Design (BBD). VLD-SLNPs-OCUs loading efficiency was 95.28 ± 2.87%, and differential scanning calorimetry data (DSC) showed the full transformation of VLD to an amorphous state and the excellent distribution in the prepared OCUs matrices. The <em>in vivo</em> release of VLD from the optimized OCUs after 24 h was 35.12 ± 2.47%, consistent with <em>in vitro</em> drug release data of 36.89 ± 3.11. The optimized OCUs are safe to use in the eye, as shown by the ocular irritation test. VLD-SLNPs-OCUs provide extended VLD release, an advantageous alternative to conventional oral dose forms, resulting in fewer systemic adverse effects and less variation in plasma drug levels. VLD-SLNPs-OCUs might benefit retinal microvascular blood flow beyond blood glucose control and may be considered a promising approach to treating diabetic retinopathy.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590156724000045/pdfft?md5=fbb4415e298afe0eccf06c47aa046056&pid=1-s2.0-S2590156724000045-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信