{"title":"Ultrasound-targeted sirolimus-loaded microbubbles improves acute rejection of heart transplantation in rats by inhibiting TGF-β1-Smad signaling pathway, promoting autophagy and reducing inflammation","authors":"Haiwei Bao, Lulu Dai, Huiyang Wang, Tianan Jiang","doi":"10.1016/j.ijpx.2024.100300","DOIUrl":null,"url":null,"abstract":"<div><div>Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed <em>via</em> adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100300"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute rejection (AR) remains a pivotal complication and leading cause of mortality within the first year following heart transplantation (HT). In this study, we assessed the impact of ultrasound-targeted microbubbles loaded with sirolimus (SIR-MBs) on AR in a rat HT model and delved into the underlying mechanisms. We established a rat abdominal ectopic HT model, which was stratified into three groups receiveing the PBS, SIR-MBs + ultrasound-targeted microbubble destruction (UTMD), and sirolimus, respectively. The protective effects of each treatments on survival rate, inflammatory response, autophagy and TGF-β1-Smad signaling pathway-related proteins were evaluted. Additionally, rescue experiment was performed via adding the autophagy inhibitor or TGF-β1 agonist in combination therapy. UTMD combined SIR-MBs mediated 15-fold higher local drug concentration compared to direct sirolimus administration. The infiltration of inflammatory cells in the transplanted hearts indicated that SIR-MBs combined with UTMD were effective in mitigating the inflammatory response, achieving levels significantly lower than those observed in the sirolimus group. Furthermore, after SIR-MBs combined with UTMD treatment, the expression levels of TGF-β1-Smad signaling pathway-related proteins in heart tissues also showed a significant decrease compared to the model control group. Conversely, the expressions of autophagy proteins LC3-II, Beclin-1 and β-arrestin showed an up-regulated trend. Rescue experiments also revealed that the enhancement in survival trends was markedly suppressed following the administration of CsA or SRI-011381, respectively. Collectively, our findings suggest that SIR-MBs combined with UTMD augment the local treatment efficacy for AR in rat HT models by inhibiting the TGF-β1-Smad signaling pathway, promoting autophagy, and alleviating inflammation.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.