Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer
{"title":"Trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib for the targeted therapy of HER-2-positive breast cancer","authors":"Xing Liu, Wenwen Shen","doi":"10.1016/j.ijpx.2024.100302","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100302"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the trastuzumab-functionalized SK-BR-3 cell membrane-wrapped mesoporous silica nanoparticles loaded with pyrotinib (Tra-CM-MSN-PYR) were prepared for targeted therapy of HER2-positive breast cancer. Transmission electron microscopy (TEM) characterization showed that MSN had a spherical morphology with mesoporous channels and that the structure of Tra-CM-MSN was a cell membrane (CM) layer successfully coated on the surface of MSN. A cellular uptake assay demonstrated that FITC-labeled Tra-CM-MSN were taken up by SK-BR-3 breast cancer cells, which illustrated that Tra-CM-MSN had good targeting ability compared with CM-MSN and MSN. In vivo imaging experiments demonstrated significant accumulation of FITC-labeled Tra-CM-MSN in tumor tissues, further proving that Tra-CM-MSN have superior targeting properties. Cell apoptosis experiments suggested that Tra-CM-MSN-PYR significantly inhibited the proliferation of SK-BR-3 breast cancer cells. The results of in vivo animal experiments also showed that Tra-CM-MSN-PYR significantly inhibited tumor growth. These results indicate that Tra-CM-MSN-PYR has potential application as a targeted therapy for HER2-positive breast cancer in the future.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.