{"title":"促进创伤感染的耐多药金黄色葡萄球菌小鼠伤口愈合的原薯蓣皂苷水凝胶","authors":"Xin Wang, Guangfan Meng, Zongyu Zhang, Jiacheng Zhao, Shaoyu Wang, Dongliang Hua, JingZhang, Jie Zhang","doi":"10.1016/j.ijpx.2024.100306","DOIUrl":null,"url":null,"abstract":"<div><div>Wound infections caused by Multidrug-resistant <em>Staphylococcus aureus</em> (MRSA) have been regarded as a challenging problem in clinic for the long time. In this study, based on the excellent antimicrobial effect of prodigiosin(PG) and the ability of hydrogel dressing in terms of tissue repair and regeneration, we prepared the PG hydrogel as a treatment for the wound infection induced by MRSA. Rheological tests indicated that PG hydrogel as a semi-solid gel had good mechanical properties. In ex vitro drug permeation studies and dermatokinetic studies showed that PG hydrogel had high PG permeability and were capable of short-term retention in the skin. In addition, in vivo experiments for mouse skin wounds showed that the serum levels of inflammatory factors including IL-β and other inflammatory factors were reduced, the inflammatory infiltration of tissues was reduced, the transcript levels of genes such as COL1A1 were up-regulated at different stages of wound healing, and the relative abundance of genera such as <em>Desulfovibrio</em> was lowered after treatment with PG hydrogel, which facilitated wound healing in mice. Our study would provide a new solution to the clinical shortage of drugs for the treatment of MRSA infection and provide a research basis for improving the comprehensive values of PG.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"8 ","pages":"Article 100306"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prodigiosin hydrogel to promote healing of trauma-infected multidrug-resistant Staphylococcus aureus mice wounds\",\"authors\":\"Xin Wang, Guangfan Meng, Zongyu Zhang, Jiacheng Zhao, Shaoyu Wang, Dongliang Hua, JingZhang, Jie Zhang\",\"doi\":\"10.1016/j.ijpx.2024.100306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wound infections caused by Multidrug-resistant <em>Staphylococcus aureus</em> (MRSA) have been regarded as a challenging problem in clinic for the long time. In this study, based on the excellent antimicrobial effect of prodigiosin(PG) and the ability of hydrogel dressing in terms of tissue repair and regeneration, we prepared the PG hydrogel as a treatment for the wound infection induced by MRSA. Rheological tests indicated that PG hydrogel as a semi-solid gel had good mechanical properties. In ex vitro drug permeation studies and dermatokinetic studies showed that PG hydrogel had high PG permeability and were capable of short-term retention in the skin. In addition, in vivo experiments for mouse skin wounds showed that the serum levels of inflammatory factors including IL-β and other inflammatory factors were reduced, the inflammatory infiltration of tissues was reduced, the transcript levels of genes such as COL1A1 were up-regulated at different stages of wound healing, and the relative abundance of genera such as <em>Desulfovibrio</em> was lowered after treatment with PG hydrogel, which facilitated wound healing in mice. Our study would provide a new solution to the clinical shortage of drugs for the treatment of MRSA infection and provide a research basis for improving the comprehensive values of PG.</div></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"8 \",\"pages\":\"Article 100306\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156724000781\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156724000781","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Prodigiosin hydrogel to promote healing of trauma-infected multidrug-resistant Staphylococcus aureus mice wounds
Wound infections caused by Multidrug-resistant Staphylococcus aureus (MRSA) have been regarded as a challenging problem in clinic for the long time. In this study, based on the excellent antimicrobial effect of prodigiosin(PG) and the ability of hydrogel dressing in terms of tissue repair and regeneration, we prepared the PG hydrogel as a treatment for the wound infection induced by MRSA. Rheological tests indicated that PG hydrogel as a semi-solid gel had good mechanical properties. In ex vitro drug permeation studies and dermatokinetic studies showed that PG hydrogel had high PG permeability and were capable of short-term retention in the skin. In addition, in vivo experiments for mouse skin wounds showed that the serum levels of inflammatory factors including IL-β and other inflammatory factors were reduced, the inflammatory infiltration of tissues was reduced, the transcript levels of genes such as COL1A1 were up-regulated at different stages of wound healing, and the relative abundance of genera such as Desulfovibrio was lowered after treatment with PG hydrogel, which facilitated wound healing in mice. Our study would provide a new solution to the clinical shortage of drugs for the treatment of MRSA infection and provide a research basis for improving the comprehensive values of PG.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.