Travis D. Crawford;Andrew J. Romes;Somnath Sengupta;Allen L. Garner
{"title":"Ferromagnetic Hysteresis Behavior of Ferroic and Multiferroic Ceramics From 100 to 400 K for Nonlinear Pulse Forming Line Applications","authors":"Travis D. Crawford;Andrew J. Romes;Somnath Sengupta;Allen L. Garner","doi":"10.1109/TMAG.2024.3524335","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3524335","url":null,"abstract":"Microwave generation in ferromagnetic nonlinear pulse forming lines (NPFLs) depends strongly on material properties, particularly the damped gyromagnetic precession of a ferrite’s magnetic moments. Additionally, temperature-dependent material properties, such as saturation magnetization and coercivity, are critical for assuring stable operation due to their influence on the output center frequency. In this study, we measured the temperature-dependent hysteresis behavior of both ferrous and multiferroic composites for NPFL applications. We manufactured ferrous materials [nickel zinc ferrite (NZF), yttrium iron garnet (YIG), and cobalt ferrite (CoFe)] using the standard ceramic processing methods and characterized them from 100 to 400 K using vibrating sample magnetometry. Additionally, multiferroic materials were manufactured by adding barium strontium titanate (BST) and were characterized using the same methods. Most ferroic and multiferroic samples agree with Kneller’s and Bloch’s laws, which state that the temperature-dependent coercivity and saturation magnetization vary as <inline-formula> <tex-math>$T^{1/2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${T}^{3/2}$ </tex-math></inline-formula>, respectively. Cobalt samples deviated slightly from Kneller’s law, while NZF deviated from Bloch’s law at temperatures below 200 K. For all samples, saturation magnetization decreased with increasing temperature and coercivity increased with decreasing temperature. These results provide a baseline analysis into temperature-dependent material properties for NPFL applications.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Magnetics Society Distinguished Lecturers for 2025","authors":"","doi":"10.1109/TMAG.2024.3514012","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3514012","url":null,"abstract":"Summary form only. Presents summaries of IEEE Magnetics Society Distinguished Lecturers Distinguished Lectures for 2025.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"1-3"},"PeriodicalIF":2.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10818380","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Magnetics Society Information","authors":"","doi":"10.1109/TMAG.2024.3520456","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3520456","url":null,"abstract":"","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 1","pages":"C2-C2"},"PeriodicalIF":2.1,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10817833","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Nb Content on the Microstructure and Magnetic Properties of the Sm₁.₂Zr₀.₂(Fe₀.₈Co₀.₂)₁₁.₅-ₓ Ti₀.₅Nbₓ (x=0 –0.4, at.%) Alloys","authors":"Shuainan Xu;Jinbo Wei;Chengli Li;Yan Wang;Zhen Shi;Xiaolian Liu;Yuan Hong;Anjian Pan;Yancheng Kong;Lizhong Zhao;Xuefeng Zhang","doi":"10.1109/TMAG.2024.3520698","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3520698","url":null,"abstract":"ThMn12-type SmFe12-based magnet is suggested to be a promising permanent magnet because of its intrinsic magnetic properties and thermal stability. However, their potential applications are currently limited, as the existence of a soft magnetic <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-Fe phase in the alloy deteriorates the hard magnetic properties. Hence, in this work, Nb element was introduced into the SmFe12 alloy to inhibit the precipitation of <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-(Fe, Co) phase, and the effects of Nb addition on the microstructure and magnetic properties of melt-spun, hot-pressed (HP), and hot-deformed (HD) Sm1.2Zr0.2(Fe0.8Co0.2)11.5-x Ti0.5Nbx (<inline-formula> <tex-math>${x} =0$ </tex-math></inline-formula>–0.4, at.%) alloys were systematically investigated. Experimental results indicate that the additional Nb element could increase the glass-forming ability and thus inhibit the formation of the <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-(Fe, Co) phase in the melt-spun ribbon. However, a zero-field shoulder appears in the demagnetization curves of the heat-treated ribbons due to the appearance of <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-(Fe, Co) phase, which could be suppressed by the HP process. As a result, the coercivity of Nb =0.2 HP magnet reaches 3.8 kOe, and the magnetic energy product (BH)max reaches 58.40 kJ/m3. Furthermore, a weak (001) texture of the 1:12 phase is obtained for the one-step HD magnet from the amorphous ribbons, which results in a remanence <inline-formula> <tex-math>${J} _{text {r}}$ </tex-math></inline-formula> of 0.11 T higher in the direction parallel to the c-axis compared to the direction perpendicular to the c-axis. The present result suggests a route to fabricate high-performance bulk SmFe12-based permanent magnets.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Hybrid Multi-Objective Optimization Algorithm and Its Application to Designs of Electromagnetic Devices","authors":"Yilun Li;Zhengwei Xie;Shiyou Yang;Zhuoxiang Ren","doi":"10.1109/TMAG.2024.3519202","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3519202","url":null,"abstract":"In this article, a novel hybrid multi-objective optimization (MOO) algorithm is proposed by combining an improved sparrow search algorithm (SSA) with an improved non-dominated sorting genetic algorithm (NSGA-II). The original SSA is improved by the introduction of population updating mechanism of moth-flame optimization (MFO) algorithm and by adopting adaptive mutation; meanwhile, NSGA-II is enhanced by using Latin hypercube sampling and dynamical selection mechanism of crossover and mutation operators. The performance of the proposed hybrid algorithm is verified using standard test functions and it is applied to the multi-objective optimal designs of TEAM22 benchmark problem and topology optimization problem of an electromagnetic actuator prototype. Numerical results demonstrate the effectiveness and superiority of the proposed algorithm.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingdong Wang;Daohan Wang;Jun Nie;Wenqiang Miao;Chenqi Wang;Xiuhe Wang
{"title":"Zero-Order Electromagnetic Vibration Suppression of Permanent Magnet Synchronous Motor With Harmonic Currents Injection","authors":"Bingdong Wang;Daohan Wang;Jun Nie;Wenqiang Miao;Chenqi Wang;Xiuhe Wang","doi":"10.1109/TMAG.2024.3519574","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3519574","url":null,"abstract":"With the extensive application of permanent magnet synchronous motors (PMSMs), their vibration and noise performance have also received increasing attention. The traditional reducing vibration method by adjusting the motor topology is not universal and costly. In addition, the zero-order mode of PMSMs always has a low natural frequency, which likely interacts with the zero-order electromagnetic force waves to increase vibration. Therefore, a novel method is proposed to reduce the zero-order vibration of PMSMs by injecting harmonic currents. Based on the zero-order natural frequency of the PMSM stator, this method will selectively adjust the frequency and amplitude of injected harmonic current to reduce vibration. The theoretical basis, simulation verification, and experimental implementation of the novel method are thoroughly researched, exhibiting its ability to reduce zero-order vibration of PMSMs.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inductance Derivation and Experimental Verification According to Operating Range of Interior Permanent Magnet Synchronous Motor","authors":"Kyeong-Won Kwak;Su-Min Kim;Sang-Hyeop Kim;Yong-Joo Kim;Kyung-Hun Shin;Jang-Young Choi","doi":"10.1109/TMAG.2024.3519739","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3519739","url":null,"abstract":"This article presents a method for deriving the inductance of an interior permanent magnet synchronous motor (IPMSM) by considering magnetic saturation. To obtain accurate inductance values during the motor characteristic analysis, it is necessary to consider the influence of core saturation on the magnetic flux changes. First, two distinct inductance calculation methods are presented, which are used to derive an inductance map across all operational regions. The torque was calculated using the derived inductance values. Finally, the validity of the analysis was confirmed by comparing the measurement results of the manufactured IPMSM.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction Model of Torque Control Parameters Considering Temperature Dependency of IPMSM","authors":"Vu-Khanh Tran;Jae-Gil Lee;Pil-Wan Han;Yon-Do Chun","doi":"10.1109/TMAG.2024.3519579","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3519579","url":null,"abstract":"This study proposes a computationally efficient torque estimation model for the interior permanent magnet synchronous motor (IPMSM), considering the temperature-dependent magnetic properties of the permanent magnet (PM). It is well known that the magnetic flux of the IPMSM is caused by both the PM and the current source in the stator winding. Hence, the magnetic torque depends on PM temperature as PM flux varies with temperature variation. Using finite element analysis (FEAs), the proposed model accounts for nonlinear characteristics, such as <inline-formula> <tex-math>$d, q$ </tex-math></inline-formula> cross-coupling and saturation effects based on flux linkage mapping. Moreover, the static FEA is conducted to achieve time-efficient computation, and the least number of required simulations is considered. An IPMSM designed for the target high-speed train traction motor is employed to validate the proposed method. Validation is conducted by comparing the results obtained from the proposed prediction model with the results from time-transient (TT) FEA at different PM temperatures. The results show a good agreement between the proposed method and the FEA results while significant reduction simulation time.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A New Hybrid Algorithm Based on PSO and Fireworks Algorithm for Optimal Design of Metasurface Absorber in RF Energy Harvesting","authors":"Na Chen;Shiyou Yang;Siguang An","doi":"10.1109/TMAG.2024.3519201","DOIUrl":"https://doi.org/10.1109/TMAG.2024.3519201","url":null,"abstract":"To address the nonlinear, multimodal, and computationally intensive challenges inherent in the optimal design of metasurface absorbers for radio frequency (RF) energy harvesting, we propose an innovative hybrid algorithm that combines particle swarm optimization (PSO) and fireworks algorithm (FWA). The proposed hybrid algorithm features several enhancements: 1) a quasi-scaling (Q.S.) mechanism, inspired by the frequency response of electromagnetic (EM) devices shifting with the scaling of physical parameters, is developed to balance the exploration and exploitation searches; 2) a self-adaptive inertia weight is introduced to enhance the convergence speed; and 3) an elite-preservation strategy is employed to ensure a global convergence. The effectiveness and merits of the proposed algorithm are validated by solving first mathematical test functions; then, two practical cases: a multi-band absorber (1.8–3 GHz, 5.85 GHz) and a broadband absorber (8–15 GHz), where a new dual-polarized metasurface absorber topology is employed. Both cases are efficiently optimized, demonstrating high absorption efficiencies within the targeted bands, and validated by both simulated and measured results.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 2","pages":"1-4"},"PeriodicalIF":2.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}