IEEE Transactions on Magnetics最新文献

筛选
英文 中文
IEEE Transactions on Magnetics Publication Information IEEE电磁学学报出版信息
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-24 DOI: 10.1109/TMAG.2025.3561645
{"title":"IEEE Transactions on Magnetics Publication Information","authors":"","doi":"10.1109/TMAG.2025.3561645","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561645","url":null,"abstract":"","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 5","pages":"C3-C3"},"PeriodicalIF":2.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976374","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Magnetics Society Information IEEE磁学学会信息
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-24 DOI: 10.1109/TMAG.2025.3561641
{"title":"IEEE Magnetics Society Information","authors":"","doi":"10.1109/TMAG.2025.3561641","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561641","url":null,"abstract":"","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 5","pages":"C2-C2"},"PeriodicalIF":2.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976465","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! techxiv:与世界分享你的预印本研究!
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-24 DOI: 10.1109/TMAG.2025.3564111
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/TMAG.2025.3564111","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3564111","url":null,"abstract":"","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 5","pages":"1-1"},"PeriodicalIF":2.1,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143871132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of Out-of-Plane Magnetic Field: Realized by TMR-Superconducting Composite Structure 面外磁场检测:tmr -超导复合结构实现
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-23 DOI: 10.1109/TMAG.2025.3563491
Yue Wu;Liye Xiao;Siyuan Han;Liwei Jing;Tianchang Liu;Jiamin Chen
{"title":"Detection of Out-of-Plane Magnetic Field: Realized by TMR-Superconducting Composite Structure","authors":"Yue Wu;Liye Xiao;Siyuan Han;Liwei Jing;Tianchang Liu;Jiamin Chen","doi":"10.1109/TMAG.2025.3563491","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563491","url":null,"abstract":"Tunneling Magnetoresistance (TMR) magnetic sensors offer advantages such as high sensitivity, low power consumption, and compact size, making them promising for applications in fields like biomedical and geological exploration. Currently, most TMR magnetic sensors can only detect magnetic flux density in the horizontal in-plane direction due to the in-plane magnetic anisotropy (IMA) of tunnel junctions. This article proposes a novel TMR-superconducting composite structure that enables TMR to detect out-of-plane magnetic flux density, and its sensitivity can be adjusted by modifying the shape and size of the superconducting layer. This study provides significant theoretical and experimental support for the design of high sensitivity magnetoresistance (MR) sensors and MR sensor arrays.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 7","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Performance Analysis of Hybrid VCMA + STT-MTJ/CMOS Circuits for CIM Architecture 基于CIM架构的VCMA + STT-MTJ/CMOS混合电路设计与性能分析
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-22 DOI: 10.1109/TMAG.2025.3563418
Prashanth Barla
{"title":"Design and Performance Analysis of Hybrid VCMA + STT-MTJ/CMOS Circuits for CIM Architecture","authors":"Prashanth Barla","doi":"10.1109/TMAG.2025.3563418","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563418","url":null,"abstract":"The emerging computation-in-memory (CIM) architecture effectively overcomes the limitations, such as memory wall and rise in the standby power dissipation associated with the conventional von-Neumann structure. In this article, we developed hybrid voltage-controlled magnetic anisotropy-assisted spin-transfer torque magnetic tunnel junction (VCMA + STT MTJ) circuits for the CIM architecture. Initially, we have proposed a novel VCMA + STT MTJ write circuit that is 63.35% and 94.86% more energy efficient with 50.87% and 59.42% lower transistors compared to spin-Hall effect-assisted (SHE) MTJ STT and STT MTJs, respectively. Subsequently, development of VCMA + STT non-volatile full adder (NVFA) with the novel write circuit unravels its supremacy with 42.21% and 89.25% reduction in total power dissipation, 35.16% and 41% lower transistor count, 31.93% and 95.13% faster write speed, and 62.79% and 99.53% lesser write power delay product (PDP) compared with SHE + STT-NVFA and STT-NVFA, respectively. Using VCMA + STT-NVFA, we have developed a non-volatile (NV)-arithmetic logic unit (ALU) to perform addition, subtraction, and all the logic operations. Comparison of the same has been conducted with its CMOS counterpart to show that NV-ALU is better in terms of power dissipation, and transistor count by 12.12% and 15.71%, respectively. Furthermore, we have extended the NV-ALU for 4 bit operations to show its feasibility for higher bit operations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-12"},"PeriodicalIF":2.1,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Field-Induced Alignment of Graphene Nanoplatelets in Carbon Fiber-Silicone Rubber Composites for Superior EMI Shielding and Thermal Conductivity 石墨烯纳米片在碳纤维-硅橡胶复合材料中的磁场诱导排列,具有优异的电磁干扰屏蔽和导热性
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-21 DOI: 10.1109/TMAG.2025.3563124
Gandluri Parameswarreddy;Maho Hosoki;Hisayuki Suematsu;Asapu Vinaya Kumar;Venkatachalam Subramanian;Ramanujam Sarathi;Rishi Verma;Archana Sharma
{"title":"Magnetic Field-Induced Alignment of Graphene Nanoplatelets in Carbon Fiber-Silicone Rubber Composites for Superior EMI Shielding and Thermal Conductivity","authors":"Gandluri Parameswarreddy;Maho Hosoki;Hisayuki Suematsu;Asapu Vinaya Kumar;Venkatachalam Subramanian;Ramanujam Sarathi;Rishi Verma;Archana Sharma","doi":"10.1109/TMAG.2025.3563124","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3563124","url":null,"abstract":"In this present study, graphene nanoplates (GNP) are aligned under the magnetic field in short carbon fiber (SCF)-polydimethylsiloxane (PDMS) composite, to understand the variation in electromagnetic interference (EMI) shielding effectiveness (SE), in X-band frequency. Initially, the GNP is aligned under the static magnetic field and with a rotating magnetic field (RMF) at lateral directions to form GNP-PDMS composites. X-ray diffraction (XRD) results indicate that the laterally applied RMF 5 wt% of GNP has a better alignment. Therefore, considering 5 wt% GNP as an optimum filler, SCF-GNP-PDMS hybrid composites are fabricated. Structural and morphological studies are carried out using XRD and HRSEM. The EMI shielding studies indicate that the laterally aligned GNP results in enhanced EMI SE of around 65.6 dB compared to the non-aligned sample giving around 58.1 dB. To understand the thermal properties, the laser flash analysis (LFA) was carried out. The thermography, thermal conductivity, and diffusion results indicate that laterally aligned samples have better heat transfer properties.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 7","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144536518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Temperature Deposition of Graphite Coating on La(Fe, Co, Si)13B0.2 for Room-Temperature Magnetic Refrigeration 室温磁制冷用La(Fe, Co, Si)13B0.2石墨涂层的低温沉积
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-21 DOI: 10.1109/TMAG.2025.3562599
Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song
{"title":"Low-Temperature Deposition of Graphite Coating on La(Fe, Co, Si)13B0.2 for Room-Temperature Magnetic Refrigeration","authors":"Chunhui Gao;Naikun Sun;Zhen Yan;Quanhui Zhang;Juan Cheng;Jiaohong Huang;Xinguo Zhao;Yingwei Song","doi":"10.1109/TMAG.2025.3562599","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3562599","url":null,"abstract":"Due to the larger magnetic entropy change <inline-formula> <tex-math>$Delta S_{M}$ </tex-math></inline-formula> and the much lower raw material cost, La(Fe, Co, Si)13 materials have the potential to replace the room-temperature magnetic refrigeration prototype material Gd. In this work, we have developed a simple chemical vapor deposition (CVD) method for in situ graphite deposition on the surface of La(Fe, Co, Si)13B0.2. Facilitated by the decomposition of the solid carbon-source polyethylene glycol (PEG), the CVD process could be carried out at a low temperature of <inline-formula> <tex-math>$400~^{circ }$ </tex-math></inline-formula>C and in a short duration of 20 min, which ensures no <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-Fe precipitation from and carbon atom diffusion into the La–Fe–Si material. These 400–700 nm-thick coatings could significantly enhance the anti-corrosive property with a positive shift of corrosion potential <inline-formula> <tex-math>${E} _{text {corr}}$ </tex-math></inline-formula> from −788 to −600 mV and a reduction of the corrosion current density <inline-formula> <tex-math>${I} _{text {corr}}$ </tex-math></inline-formula> from <inline-formula> <tex-math>$1.67times 10^{-5}$ </tex-math></inline-formula> to <inline-formula> <tex-math>$9.14times 10^{-6}$ </tex-math></inline-formula> A/cm2, accompanied by a concurrent enhancement of the thermal conductivity. More favorably, a large <inline-formula> <tex-math>$Delta S_{M}$ </tex-math></inline-formula> of ~4 J/kg<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>K at 286 K and a relative cooling power (RCP) value of ~98 J/kg in 0–1.5 T were maintained.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USCIM: Computing-in-Memory With Unipolar Switching SOT-MRAM 基于单极开关SOT-MRAM的内存计算
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-17 DOI: 10.1109/TMAG.2025.3561873
Haiwen Li;Enyi Yao;Pei Qin;Sheng Jiang
{"title":"USCIM: Computing-in-Memory With Unipolar Switching SOT-MRAM","authors":"Haiwen Li;Enyi Yao;Pei Qin;Sheng Jiang","doi":"10.1109/TMAG.2025.3561873","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561873","url":null,"abstract":"This brief presents an arithmetic paradigm for computing-in-memory (CIM) using unipolar switching spin-orbit-torque magnetic random access memory (SOT-MRAM) devices. The proposed MRAM array comprised two transistors and one SOT magnetic tunnel junction (MTJ) cell and achieves basic Boolean logic operations [<sc>and</small>, <sc>xor</small>, <sc>or</small>, majority (MAJ)] and full-adder (FA) operations. The hybrid spintronics/CMOS simulation results show that the proposed designs improve latency and energy consumption by about 34%–132% and 212%–489% compared with the existing design, respectively. Monte Carlo simulations further prove the robustness of our design for the effectiveness of write/read operations.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-6"},"PeriodicalIF":2.1,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Neural-Network-Based Source Reconstruction for Estimating the Emission of Linear Synchronous Motors in Vehicle Bodies 基于改进神经网络的车体直线同步电机源重构估计
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-16 DOI: 10.1109/TMAG.2025.3561684
Jiahui Zhang;Dan Zhang;Yinghong Wen;Jinbao Zhang
{"title":"Improved Neural-Network-Based Source Reconstruction for Estimating the Emission of Linear Synchronous Motors in Vehicle Bodies","authors":"Jiahui Zhang;Dan Zhang;Yinghong Wen;Jinbao Zhang","doi":"10.1109/TMAG.2025.3561684","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3561684","url":null,"abstract":"To quickly and accurately characterize the effects of linear synchronous motors (LSMs) in the electromagnetic suspension (EMS) maglev system on the surrounding electromagnetic environment, the field-source equivalent model for electromagnetic emission with obstacles in the near zone was built using cascade neural network that integrates convolutional neural networks (CNNs) and backpropagation neural networks (BPNNs). The influence of the train body on the electromagnetic emissions of linear motors is equated with the magnetic field shielding effectiveness. Results by the proposed model were validated by measurement and full-wave simulation results.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Curie Temperature of Fe3O4 to Achieve Automated Magnetic Hyperthermia 调节Fe3O4的居里温度实现自动磁热疗
IF 2.1 3区 工程技术
IEEE Transactions on Magnetics Pub Date : 2025-04-15 DOI: 10.1109/TMAG.2025.3560645
Kabir S. Suraj;Gen Tatara;Hiroshi Katayama-Yoshida;M. Hussein N. Assadi
{"title":"Tuning the Curie Temperature of Fe3O4 to Achieve Automated Magnetic Hyperthermia","authors":"Kabir S. Suraj;Gen Tatara;Hiroshi Katayama-Yoshida;M. Hussein N. Assadi","doi":"10.1109/TMAG.2025.3560645","DOIUrl":"https://doi.org/10.1109/TMAG.2025.3560645","url":null,"abstract":"We examine the impact of samarium doping on the Curie temperature (<inline-formula> <tex-math>$T_{c}$ </tex-math></inline-formula>) of magnetite through density functional theory (DFT) calculations. Upon calculating the total energies of the different spin orientations among the cations in Fe 3O 4:Sm, we realized that the Sm atom prefers to substitute an Fe from the octahedral site with a spin opposing that of the atom it replaces. Our results show that Sm doping weakens the ferrimagnetic J coupling between the octahedral and tetrahedral Fe atoms. As a result, the normalized magnetization profile across a broad temperature range shows that the samarium-doped compound (Fe3O4:Sm) has a <inline-formula> <tex-math>$T_{c}$ </tex-math></inline-formula> of approximately 319 K, which aligns well with the target range for self-regulated magnetic nanoparticle hyperthermia (MNH) applications. Furthermore, we demonstrated that Sm doping in magnetite with high electron concentrations of <inline-formula> <tex-math>$10^{22} mathrm{~cm}^{-3}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$10^{23} mathrm{~cm}^{-3}$ </tex-math></inline-formula> almost nearly preserves the Hall coefficient (<inline-formula> <tex-math>$R_{H}$ </tex-math></inline-formula>), implying that Fe3O4:Sm can be synthesized without significantly altering magnetite’s ability for tumor tissue identification based on the Hall effect.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 6","pages":"1-5"},"PeriodicalIF":2.1,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信