{"title":"硬化对AISI 1045钢磁性能的影响","authors":"Mario Vukotić;Damijan Miljavec;Jaka Burja","doi":"10.1109/TMAG.2025.3598357","DOIUrl":null,"url":null,"abstract":"Hardening is an effective method to improve the hardness of the steel construction elements of an electric machine, such as rotor shaft. Surface hardening is typically employed for shafts as it provides a material with hard wear-resistant surface (martensite) and tough and ductile core (ferrite and pearlite), with the transitional zone between them (martensite, ferrite, and pearlite). The investigations were performed on the specimens of AISI 1045 steel, which is commonly used in electric machines. There were three categories of specimens, each of them representing a region in a surface hardened shaft – normalized specimens found in as-delivered steel (core), partially hardened specimens obtained by partial hardening of normalized specimens (transitional zone), and fully hardened specimens (hardened surface), also obtained from the normalized steel. The comparison of the magnetization curves showed that partially and fully hardened specimens exhibited a decrease of saturation magnetic flux density for about 11% and 7%, respectively, compared to the normalized specimens. The magnetizing curves from this study can be directly used in the magnetic simulations of a surface-hardened shaft. This allows more accurate electromagnetic design of electric machines, in which the shaft represents an important part of the magnetic circuit, e.g., two-pole wound-rotor synchronous machine.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 10","pages":"1-7"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11124329","citationCount":"0","resultStr":"{\"title\":\"Effect of Hardening on the Magnetic Behavior of AISI 1045 Steel\",\"authors\":\"Mario Vukotić;Damijan Miljavec;Jaka Burja\",\"doi\":\"10.1109/TMAG.2025.3598357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardening is an effective method to improve the hardness of the steel construction elements of an electric machine, such as rotor shaft. Surface hardening is typically employed for shafts as it provides a material with hard wear-resistant surface (martensite) and tough and ductile core (ferrite and pearlite), with the transitional zone between them (martensite, ferrite, and pearlite). The investigations were performed on the specimens of AISI 1045 steel, which is commonly used in electric machines. There were three categories of specimens, each of them representing a region in a surface hardened shaft – normalized specimens found in as-delivered steel (core), partially hardened specimens obtained by partial hardening of normalized specimens (transitional zone), and fully hardened specimens (hardened surface), also obtained from the normalized steel. The comparison of the magnetization curves showed that partially and fully hardened specimens exhibited a decrease of saturation magnetic flux density for about 11% and 7%, respectively, compared to the normalized specimens. The magnetizing curves from this study can be directly used in the magnetic simulations of a surface-hardened shaft. This allows more accurate electromagnetic design of electric machines, in which the shaft represents an important part of the magnetic circuit, e.g., two-pole wound-rotor synchronous machine.\",\"PeriodicalId\":13405,\"journal\":{\"name\":\"IEEE Transactions on Magnetics\",\"volume\":\"61 10\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11124329\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Magnetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11124329/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11124329/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Hardening on the Magnetic Behavior of AISI 1045 Steel
Hardening is an effective method to improve the hardness of the steel construction elements of an electric machine, such as rotor shaft. Surface hardening is typically employed for shafts as it provides a material with hard wear-resistant surface (martensite) and tough and ductile core (ferrite and pearlite), with the transitional zone between them (martensite, ferrite, and pearlite). The investigations were performed on the specimens of AISI 1045 steel, which is commonly used in electric machines. There were three categories of specimens, each of them representing a region in a surface hardened shaft – normalized specimens found in as-delivered steel (core), partially hardened specimens obtained by partial hardening of normalized specimens (transitional zone), and fully hardened specimens (hardened surface), also obtained from the normalized steel. The comparison of the magnetization curves showed that partially and fully hardened specimens exhibited a decrease of saturation magnetic flux density for about 11% and 7%, respectively, compared to the normalized specimens. The magnetizing curves from this study can be directly used in the magnetic simulations of a surface-hardened shaft. This allows more accurate electromagnetic design of electric machines, in which the shaft represents an important part of the magnetic circuit, e.g., two-pole wound-rotor synchronous machine.
期刊介绍:
Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.