Tamara Krpic;Maxime Bilodeau;Meaghan A. O’Reilly;Patrice Masson;Nicolas Quaegebeur
{"title":"Extended Field of View Imaging Through Correlation With an Experimental Database","authors":"Tamara Krpic;Maxime Bilodeau;Meaghan A. O’Reilly;Patrice Masson;Nicolas Quaegebeur","doi":"10.1109/TUFFC.2025.3553784","DOIUrl":"10.1109/TUFFC.2025.3553784","url":null,"abstract":"In this article, a correlation-based (CB) ultrasound imaging technique is implemented to extend the field of view (FOV) in the inspected medium and to enhance image homogeneity. This implementation involves the acquisition, the compression, and the adaptation of a database of experimental reference signals (CB-Exp), consisting of backpropagated reflections on point-like scatterers at different positions, as an improvement over preceding implementations involving a database of numerical reference signals (CB-Num). Starting from a large database acquired in water to a database with a 99% size reduction that can be applied to tissue-like media, CB-Exp has been validated in vitro on a CIRS 040GSE phantom. When compared with the synthetic aperture focusing technique (SAFT) and CB-Num, CB-Exp results show reduced sensitivity to the probe’s directivity, allowing an FOV extension from 25° with SAFT to 75° with CB-Exp. In vivo testing on a piglet’s heart with CB-Exp imaging showed a 3.5-dB contrast improvement on the pericardium wall. Overall benefits of this method include a reduction in the background gCNR standard deviation (std) of 0.2 and a reduction in the std of 10 dB in the point-like targets levels, which translates to more homogeneous sensitivity in the axial and lateral directions of the image.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"646-655"},"PeriodicalIF":3.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ian Anderson;Omar Barrera;Nishanth Ravi;Lezli Matto;Kapil Saha;Supratik Dasgupta;Joshua Campbell;Jack Kramer;Eugene Kwon;Tzu-Hsuan Hsu;Sinwoo Cho;Pietro Simeoni;Jue Hou;Matteo Rinaldi;Mark S. Goorsky;Ruochen Lu
{"title":"Solidly Mounted Scandium Aluminum Nitride on Acoustic Bragg Reflector Platforms at 14–20 GHz","authors":"Ian Anderson;Omar Barrera;Nishanth Ravi;Lezli Matto;Kapil Saha;Supratik Dasgupta;Joshua Campbell;Jack Kramer;Eugene Kwon;Tzu-Hsuan Hsu;Sinwoo Cho;Pietro Simeoni;Jue Hou;Matteo Rinaldi;Mark S. Goorsky;Ruochen Lu","doi":"10.1109/TUFFC.2025.3554597","DOIUrl":"10.1109/TUFFC.2025.3554597","url":null,"abstract":"This article reports the first groups of low-loss acoustic solidly mounted resonators (SMRs) and acoustic delay lines (ADLs) at 14–20 GHz. Bulk acoustic waves (BAWs) are confined in thin-film scandium aluminum nitride (ScAlN) on top of dielectric acoustic Bragg reflectors, consisting of alternating silicon dioxide with tantalum pentoxide (Ta2O5/SiO<inline-formula> <tex-math>${}_{{2}}text {)}$ </tex-math></inline-formula> or niobium pentoxide (Nb2O5/SiO<inline-formula> <tex-math>${}_{{2}}$ </tex-math></inline-formula>) on Si carrier wafers. Stack material parameters are extracted via high-resolution X-ray diffraction (HRXRD) and X-ray reflectivity (XRR). The simulation and experiment show confinement for longitudinal BAW from 14 to 20 GHz. ADLs show high propagation Q above 478 and 171 for Ta2O5/SiO2 and Nb2O5/SiO2, respectively. SMRs in both stacks perform similarly, showing coupling coefficient (<inline-formula> <tex-math>${k}^{{2}}text {)}$ </tex-math></inline-formula> of 2.0%, series Q (<inline-formula> <tex-math>${Q}_{s}text {)}$ </tex-math></inline-formula> of 156, and parallel Q (<inline-formula> <tex-math>${Q}_{p}text {)}$ </tex-math></inline-formula> values of 140 for Ta2O5/SiO2, while <inline-formula> <tex-math>${k}^{{2}}$ </tex-math></inline-formula> of 2.4%, <inline-formula> <tex-math>${Q}_{s}$ </tex-math></inline-formula> of 140, and <inline-formula> <tex-math>${Q}_{p}$ </tex-math></inline-formula> of 109 for Nb2O5/SiO2, both at 18.6 GHz. Upon development, ScAlN solidly mounted platforms will enable signal processing elements with better power handling.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"656-662"},"PeriodicalIF":3.0,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143709637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scale Interdigital Transducer-Based Microacoustic Resonators Into mmWave Applications","authors":"Xingyu Liu;Junyan Zheng;Yansong Yang","doi":"10.1109/TUFFC.2025.3554004","DOIUrl":"10.1109/TUFFC.2025.3554004","url":null,"abstract":"Different orders of Lamb wave mode resonators using interdigital transducers (IDTs) and LiNbO3 thin films are increasingly important due to their large electromechanical coupling (<inline-formula> <tex-math>${k}_{text {t}}^{{2}}$ </tex-math></inline-formula>) and high phase velocities, essential for millimeter wave (mmWave) miniaturized acoustic filters. In <inline-formula> <tex-math>$50~Omega $ </tex-math></inline-formula> systems, achieving proper impedance matching necessitates large static capacitance. However, this capacitance may interact with self-inductance, leading to multiple electromagnetic (EM) self-resonances in the targeted spectrum, which is one of the major bottlenecks in using acoustic waves for mmWave applications. These resonances will decrease the series quality factor (Q) and alter the capacitive characteristics of the resonator, which significantly degrades the performance in filtering and frequency reference, especially with higher-order Lamb wave modes. Unlike the sub-6 GHz system, a new modeling method is needed to analyze the previously neglected EM-acoustic coupling in the 5 G/6G mmWave spectrum. This study proposes new design philosophies for IDTs to reduce self-inductance for mmWave applications, exploring the interactions between acoustic and EM waves within the IDTs and introducing new equivalent circuit models for various scenarios. To verify these methods, devices were fabricated on Y-128° cut LiNbO3 thin films. Both simulation and experimental results demonstrate the accuracy and efficiency of the proposed approaches. This work enables the effective use of IDT in the mmWave range without sacrificing necessary static capacitance and explains the EM effects based on the proposed multiphysic equivalent circuit models.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"674-685"},"PeriodicalIF":3.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143700279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vassili Pustovalov;Duong Hung Pham;Corentin Alix;Jean-Pierre Remeniéras;Denis Kouamé
{"title":"Computational Super-Resolution for Ultrasound Localization Microscopy Through Solving an Inverse Problem","authors":"Vassili Pustovalov;Duong Hung Pham;Corentin Alix;Jean-Pierre Remeniéras;Denis Kouamé","doi":"10.1109/TUFFC.2025.3553735","DOIUrl":"10.1109/TUFFC.2025.3553735","url":null,"abstract":"Ultrasound localization microscopy (ULM) represents a significant advancement over traditional ultrasound (US) imaging, enabling super-resolution (SR) imaging of microvascular structures with unprecedented detail, by using microbubbles (MBs) as highly reflective contrast agents. After injection into the bloodstream, MBs are localized in US images to reconstruct the microvasculature. However, this technique faces a tradeoff between MB localization accuracy and acquisition time. Perfusion with low MB concentrations reduces signal overlap and achieves high localization accuracy but requires extended acquisition times. Conversely, higher MB concentrations shorten acquisition times but increase signal overlap, limiting localization precision. Traditionally, ULM consists of five main steps: tissue filtering, MB detection, MB super-localization, tracking, and rendering. In this study, we present a novel approach that combines a robust principal component analysis (RPCA) with a computational SR technique, replacing the first three steps of ULM with a single process based on solving an SR inverse problem. This method isolates MB signals from background noise and enhances the localization of overlapping MBs, thereby improving overall ULM performance. The experimental results from simulated and in vivo data demonstrate that our proposed approach increases the SR factor by up to 30% and enhances the contrast ratio (CR) by 3.5 dB. It also produces comparable results across other image quality metrics. These improvements enable denser, higher contrast vascular images.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"636-645"},"PeriodicalIF":3.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Hubbard;David Choi;Tejaswi Worlikar;Ulrich Scheven;Hanna Kim;Jonathan R. Sukovich;Timothy L. Hall;Zhen Xu
{"title":"MRI Coregistered Rodent Histotripsy Array for Orthotopic Liver Models","authors":"Ryan Hubbard;David Choi;Tejaswi Worlikar;Ulrich Scheven;Hanna Kim;Jonathan R. Sukovich;Timothy L. Hall;Zhen Xu","doi":"10.1109/TUFFC.2025.3553083","DOIUrl":"10.1109/TUFFC.2025.3553083","url":null,"abstract":"Histotripsy has emerged as a promising therapeutic option for liver tumors, recently gaining food and drug administration (FDA) approval for clinical use in October 2023. Preclinical in vivo histotripsy experiments primarily utilize subcutaneous ectopic murine tumor models, which fail to accurately replicate the complex immunosuppressive tumor microenvironment (TME) of liver tumors. In order to address this gap, we present the design, development, and in vivo demonstration of a miniature, electronically steerable magnetic resonance imaging (MRI)-guided histotripsy array tailored for orthotopic murine liver tumor models. This novel system integrates an 89-element phased array within a 7.0-T small animal MRI scanner, enabling precise targeting through enhanced soft tissue contrast and 3-D visualization. The targeting accuracy of the array was validated in tissue-mimicking red blood cell (RBC) phantoms, exhibiting targeting precision of <inline-formula> <tex-math>$0.24~pm ~0.1$ </tex-math></inline-formula> mm. Subsequent in vivo experiments in naïve mice demonstrated successful liver ablations, confirmed by gross morphology and histological analysis. However, the presence of grating lobes led to undesired collateral damage, highlighted by lung hemorrhages, necessitating future adjustments in the array’s design. This study illustrates the foundational steps necessary for translating histotripsy experiments from subcutaneous to orthotopic models.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"581-590"},"PeriodicalIF":3.0,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information","authors":"","doi":"10.1109/TUFFC.2025.3549670","DOIUrl":"https://doi.org/10.1109/TUFFC.2025.3549670","url":null,"abstract":"","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 3","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930336","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143637973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patch Fusion: A Novel Ultrafast Multi-Frequency Ultrasound Fusion Imaging Method for Pedicle Screw Navigation","authors":"Xiangxin Li;Xueru Yang;Jiaqi Li;Yang Jiao;Jun Shen;Yaoyao Cui;Weiwei Shao","doi":"10.1109/TUFFC.2025.3549842","DOIUrl":"10.1109/TUFFC.2025.3549842","url":null,"abstract":"Intraosseous ultrasound imaging is valuable for guiding pedicle screw placement in surgery. However, single-frequency ultrasound, whether low or high, often fails to provide both adequate imaging resolution and depth simultaneously. To address this limitation, we introduce a novel ultrafast multi-frequency ultrasound patch fusion imaging method for pedicle screw navigation. This approach combines the strengths of both high-frequency and low-frequency ultrasound images, greatly enhancing the detail and clarity of the resulting images while significantly reducing the time required for image fusion. We validated our method through simulation and ex vivo experiments, using metrics such as information entropy (IE), spatial frequency (SF), and average gradient (AG) to assess the quality of the fused images. We also recorded the algorithm’s execution time. The results demonstrate that our fusion method substantially improves image richness and clarity, enabling a more comprehensive and accurate assessment of the pedicle screw track. Importantly, it also reduces fusion time compared to previous methods, making real-time clinical multi-frequency ultrasound fusion imaging a viable possibility. The in vivo experimental results of the sheep spinal pedicle screw track further demonstrate the capabilities of the patch fusion method in visualizing the internal conditions of the pedicle screw track and meeting the requirements for real-time fusion imaging. The proposed approach offers substantial support in surgical real-time navigation and ongoing monitoring within the domains of orthopedics and surgery.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 4","pages":"467-478"},"PeriodicalIF":3.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luuk van Knippenberg;R. Arthur Bouwman;Ruud J. G. van Sloun;Massimo Mischi
{"title":"Adaptive Transmit Sequencing for Robust Flow Monitoring in Cross-Sectional Doppler","authors":"Luuk van Knippenberg;R. Arthur Bouwman;Ruud J. G. van Sloun;Massimo Mischi","doi":"10.1109/TUFFC.2025.3549637","DOIUrl":"10.1109/TUFFC.2025.3549637","url":null,"abstract":"Doppler ultrasound is a noninvasive imaging technique that measures blood flow velocity and is commonly used in cardiac evaluation and vascular assessment. Compared to the conventional longitudinal view, cross-sectional Doppler is more robust to motion, making it more suitable for monitoring applications. In this article, an adaptive framework is presented to automatically monitor flow in the common carotid artery using cross-sectional Doppler. Based on vessel segmentation and geometry estimation, transmit parameters such as the focal point, steering angle, and aperture width are adaptively adjusted to optimize the Doppler angle and maximize signal-to-noise ratio (SNR). The velocity profile is estimated using multiple gates along a single line, resulting in velocity estimates with high temporal resolution. The effect and optimal settings of relevant nonadaptive ultrasound parameters are explored through a design of experiments (DoE), making use of simulated and phantom data. These optimal parameters result in accurate estimates of average velocity with a mean error of 0.8% in silico and 1.6% in vitro. In addition, velocity estimates show a reduced variance and improved temporal resolution compared to conventional line-by-line scanning. Feasibility of the method is also demonstrated in vivo, where a diverse range of velocity profiles was observed. These findings suggest that this method could be feasible for automatic flow monitoring or cardiac output estimation through hemodynamic modeling.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 4","pages":"515-529"},"PeriodicalIF":3.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wideband Surface Acoustic Wave Resonator With Good Temperature Stability Using LiNbO3 on Glass","authors":"Yong Guo;Michio Kadota;Yuji Ohashi;Shuji Tanaka","doi":"10.1109/TUFFC.2025.3548977","DOIUrl":"10.1109/TUFFC.2025.3548977","url":null,"abstract":"Currently, wideband surface acoustic wave (SAW) devices are in demand. However, SAW resonators with a large coupling factor have a large negative temperature coefficient of frequency (TCF). In this work, we developed a new hetero acoustic layer (HAL) structure combining LiNbO3 (LN) and a glass with a low coefficient of thermal expansion (CTE), called ABC-G glass, to obtain the resonator with both large bandwidth (BW) and low TCF. The bulk and leaky SAW (LSAW) velocities of ABC-G glass were measured by ultrasonic microspectroscopy (UMS) technology, and its positive temperature coefficient of velocity (TCV) was confirmed. The (0°, 101°, 0°) and (0°, 120°, 0°) LNs are selected for experiments. The measured results show impedance ratio (Z-ratio) and BW as high as 82 dB and 12%, respectively. The measured TCFs reach −27 ppm/°C and −24 ppm/°C at resonance and antiresonance frequency, respectively, which are significantly improved compared with LN/Quartz (Qz). Ladder filters composed of three LN/ABC-G resonators are prototyped using a T-type configuration, and the insertion loss lower than 1 dB with a fractional bandwidth (FBW) of 15.0% was demonstrated. At the same time, no spurious response was observed up to 10 GHz. The results shown in this work prove the high performance of the LN/ABC-G structure in applications requiring good temperature stability, large BW, and out-of-band spurious-free characteristics.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"663-673"},"PeriodicalIF":3.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zig-Zag ScAlN 12-Layer for Shear Mode BAW Transformer Application in Rectenna","authors":"Sarina Kinoshita;Rei Karasawa;Yohkoh Shimano;Momoka Matsumura;Takahiko Yanagitani","doi":"10.1109/TUFFC.2025.3546780","DOIUrl":"10.1109/TUFFC.2025.3546780","url":null,"abstract":"Wireless power transfer (WPT) with rectennas is important for IoT sensor applications. Miniature GHz voltage transformers are more attractive than a large-size charge pump to operate the rectifiers efficiently. In this study, GHz bulk acoustic wave (BAW) piezoelectric transformers based on c-axis zig-zag polarization-inverted ScAlN thin films are proposed. The capacitive impedance (<inline-formula> <tex-math>${Z}_{C}$ </tex-math></inline-formula>) of n-layer c-axis zig-zag multilayers resonator is n-times larger than that of single-layer resonator. Therefore, shear mode operation in the c-axis zig-zag structure acts as a piezoelectric transformer. To demonstrate this principle, c-axis zig-zag ScAlN multilayers are grown using glancing angle sputtering deposition (GLAD). 12-layer c-axis 40°–50° zig-zag structure is clearly observed by scanning electron microscopy (SEM) and XRD pole figure analysis. The open-circuit voltage gain approaching +15 dB in 600 MHz range in the high-overtone bulk acoustic resonator (HBAR) type transformer based on polarization-inverted 12-layer thin film is observed. The experimental results and the theoretical predictions computed by Mason’s equivalent circuit model considering the effect of the polarization-inverted structure are in good agreement.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 4","pages":"547-554"},"PeriodicalIF":3.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10919215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143596970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}