Scale Interdigital Transducer-Based Microacoustic Resonators Into mmWave Applications

IF 3 2区 工程技术 Q1 ACOUSTICS
Xingyu Liu;Junyan Zheng;Yansong Yang
{"title":"Scale Interdigital Transducer-Based Microacoustic Resonators Into mmWave Applications","authors":"Xingyu Liu;Junyan Zheng;Yansong Yang","doi":"10.1109/TUFFC.2025.3554004","DOIUrl":null,"url":null,"abstract":"Different orders of Lamb wave mode resonators using interdigital transducers (IDTs) and LiNbO3 thin films are increasingly important due to their large electromechanical coupling (<inline-formula> <tex-math>${k}_{\\text {t}}^{{2}}$ </tex-math></inline-formula>) and high phase velocities, essential for millimeter wave (mmWave) miniaturized acoustic filters. In <inline-formula> <tex-math>$50~\\Omega $ </tex-math></inline-formula> systems, achieving proper impedance matching necessitates large static capacitance. However, this capacitance may interact with self-inductance, leading to multiple electromagnetic (EM) self-resonances in the targeted spectrum, which is one of the major bottlenecks in using acoustic waves for mmWave applications. These resonances will decrease the series quality factor (Q) and alter the capacitive characteristics of the resonator, which significantly degrades the performance in filtering and frequency reference, especially with higher-order Lamb wave modes. Unlike the sub-6 GHz system, a new modeling method is needed to analyze the previously neglected EM-acoustic coupling in the 5 G/6G mmWave spectrum. This study proposes new design philosophies for IDTs to reduce self-inductance for mmWave applications, exploring the interactions between acoustic and EM waves within the IDTs and introducing new equivalent circuit models for various scenarios. To verify these methods, devices were fabricated on Y-128° cut LiNbO3 thin films. Both simulation and experimental results demonstrate the accuracy and efficiency of the proposed approaches. This work enables the effective use of IDT in the mmWave range without sacrificing necessary static capacitance and explains the EM effects based on the proposed multiphysic equivalent circuit models.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"72 5","pages":"674-685"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937767/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Different orders of Lamb wave mode resonators using interdigital transducers (IDTs) and LiNbO3 thin films are increasingly important due to their large electromechanical coupling ( ${k}_{\text {t}}^{{2}}$ ) and high phase velocities, essential for millimeter wave (mmWave) miniaturized acoustic filters. In $50~\Omega $ systems, achieving proper impedance matching necessitates large static capacitance. However, this capacitance may interact with self-inductance, leading to multiple electromagnetic (EM) self-resonances in the targeted spectrum, which is one of the major bottlenecks in using acoustic waves for mmWave applications. These resonances will decrease the series quality factor (Q) and alter the capacitive characteristics of the resonator, which significantly degrades the performance in filtering and frequency reference, especially with higher-order Lamb wave modes. Unlike the sub-6 GHz system, a new modeling method is needed to analyze the previously neglected EM-acoustic coupling in the 5 G/6G mmWave spectrum. This study proposes new design philosophies for IDTs to reduce self-inductance for mmWave applications, exploring the interactions between acoustic and EM waves within the IDTs and introducing new equivalent circuit models for various scenarios. To verify these methods, devices were fabricated on Y-128° cut LiNbO3 thin films. Both simulation and experimental results demonstrate the accuracy and efficiency of the proposed approaches. This work enables the effective use of IDT in the mmWave range without sacrificing necessary static capacitance and explains the EM effects based on the proposed multiphysic equivalent circuit models.
基于数字间换能器的微声谐振器在毫米波中的应用。
使用数字间换能器(idt)和LiNbO3薄膜的不同阶的Lamb波模式谐振器越来越重要,因为它们具有大的机电耦合(kt2)和高相速度,这对于毫米波小型化声学滤波器至关重要。在50个Ω系统中,实现适当的阻抗匹配需要大的静态电容。然而,这种电容可能与自感相互作用,导致目标频谱中的多个电磁(EM)自共振,这是将声波用于毫米波应用的主要瓶颈之一。这些谐振会降低谐振器的串联品质因子(Q),改变谐振器的电容特性,从而显著降低滤波和参考频率的性能,特别是在高阶兰姆波模式下。与sub-6 GHz系统不同,需要一种新的建模方法来分析5G/6G毫米波频谱中之前被忽视的EM-acoustic耦合。本研究提出了新的idt设计理念,以减少毫米波应用中的自感,探索idt内声波和电磁波之间的相互作用,并为各种场景引入新的等效电路模型。为了验证这些方法,在Y-128°切割的LiNbO3薄膜上制作了器件。仿真和实验结果均证明了该方法的准确性和有效性。这项工作能够在毫米波范围内有效地使用IDT,而不牺牲必要的静态电容,并基于所提出的多物理场等效电路模型解释了EM效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信