IEEE Transactions on Haptics最新文献

筛选
英文 中文
Horizontal Plane Haptic Redirection: Realizing Haptic Feedback for the Virtual Inclined Plane in VR 水平面触觉重定向:在 VR 中实现虚拟倾斜平面的触觉反馈。
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354514
Dexin Liu;Hengxin Chen
{"title":"Horizontal Plane Haptic Redirection: Realizing Haptic Feedback for the Virtual Inclined Plane in VR","authors":"Dexin Liu;Hengxin Chen","doi":"10.1109/TOH.2024.3354514","DOIUrl":"10.1109/TOH.2024.3354514","url":null,"abstract":"Some interactions in virtual environments need to be operated on inclined planes. If a real inclined plane can be found in the real environment that corresponds exactly to the angle of the virtual inclined plane to provide haptic feedback, the user's immersion can be enhanced. However, it is not easy to find such a real inclined plane in the real environment. We proposed a horizontal plane haptic redirection scheme, where users interacting with virtual inclined planes in virtual environments can obtain haptic feelings by using real horizontal planes that are easily available in the real world for redirection mapping. We also designed an integrated solution to locate the real horizontal plane and for haptic redirection based on the Vive Pro headset. Then we measured the angle and size thresholds for horizontal plane haptic redirection as 20° and 88%, respectively, through a user study. Through experiments, we also found that when the degree of redirection exceeded the threshold, the user's operation efficiency would be significantly reduced. In addition, we compared the horizontal plane haptic redirection scheme with the scheme without redirection and the scheme without haptic feedback to demonstrate the validity and necessity of the redirection scheme proposed in this paper.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"26-32"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation 结合振动触觉和肌肉电刺激的虚拟碰撞多模式触觉反馈。
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354268
Jungeun Lee;Seungmoon Choi
{"title":"Multimodal Haptic Feedback for Virtual Collisions Combining Vibrotactile and Electrical Muscle Stimulation","authors":"Jungeun Lee;Seungmoon Choi","doi":"10.1109/TOH.2024.3354268","DOIUrl":"10.1109/TOH.2024.3354268","url":null,"abstract":"In this paper, we explore the effects of multimodal haptic feedback combining vibrotactile and electrical muscle stimulation (EMS) on expressing virtual collisions. We first present a wearable multimodal haptic device capable of generating both mechanical vibration and EMS stimuli. The two types of haptic stimulus are combined into a haptic rendering method that conveys improved virtual collision sensations. This multimodal rendering method highlights the strengths of each modality while compensating for mutual weaknesses. The multimodal rendering method is compared in subjective quality with two unimodal methods (vibration only and EMS only) by a user study. Experimental results demonstrate that our multimodal feedback method can elicit more realistic, enjoyable, expressive, and preferable user experiences.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"33-38"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lever Mechanism for Diaphragm-Type Vibrators to Enhance Vibrotactile Intensity 用于膜片式振动器的杠杆机制,以增强振动触觉强度。
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-16 DOI: 10.1109/TOH.2024.3354253
Taku Hachisu;Masayuki Kajiura;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Masashi Konyo
{"title":"Lever Mechanism for Diaphragm-Type Vibrators to Enhance Vibrotactile Intensity","authors":"Taku Hachisu;Masayuki Kajiura;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Masashi Konyo","doi":"10.1109/TOH.2024.3354253","DOIUrl":"10.1109/TOH.2024.3354253","url":null,"abstract":"Thin and light vibrators that leverage the inverse piezoelectric effect with a diaphragm mechanism are promising vibrotactile actuators owing to their form factors and high temporal and frequency response. However, generating perceptually sufficient displacement in the low-frequency domain is challenging. This study presents a lever mechanism mounted on a diaphragm vibrator to enhance the vibrotactile intensity of low-frequency vibrotactile stimuli. The lever mechanism is inspired by the tactile contact lens consisting of an array of cylinders held against the skin on a sheet that enhances micro-bump tactile detection. We built an experimental apparatus including our previously developed thin-film diaphragm-type vibrator, which reproduced the common characteristic of piezoelectric vibrators: near-threshold displacement (10 to 20 μm) at low frequency. Experiments demonstrated enhanced vibrotactile intensity at frequencies less than 100 Hz with the lever mechanism. Although the arrangement and material of the mechanism can be improved, our findings can help improve the expressiveness of diaphragm-type vibrators.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"20-25"},"PeriodicalIF":2.9,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10400851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Contact Force on Vibrotactile Perceived Intensity Across the Upper Body 接触力对上半身振动触觉强度的影响
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-15 DOI: 10.1109/TOH.2024.3353761
Dajin Lee;Gyeore Yun;Seungmoon Choi
{"title":"Effects of Contact Force on Vibrotactile Perceived Intensity Across the Upper Body","authors":"Dajin Lee;Gyeore Yun;Seungmoon Choi","doi":"10.1109/TOH.2024.3353761","DOIUrl":"10.1109/TOH.2024.3353761","url":null,"abstract":"Full-body haptic suits, which can provide tactile sensations across the entire body, have been gaining popularity recently. The tightness of a suit to the user's body determines the contact force between the tactile actuators and the body. The contact force is likely to alter the intended perceptual effects, but relatively little is known about the extent of the alteration. Under this context, we present the effects of contact force on vibrotactile perceived intensity on three body parts: dorsal hand, upper arm, and lower back. To this end, we conducted three perceptual magnitude estimation experiments while controlling vibration amplitude, frequency, and contact force. The results show that increasing the contact force generally made the vibration stimuli feel stronger, while the specific behaviors were dependent on the body part and the experimental variables. Finally, we summarize the major findings and provide guidelines regarding contact force adjustment for effective full-body haptic rendering.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"14-19"},"PeriodicalIF":2.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origami-Based Haptic Syringe for Local Anesthesia Simulator 基于折纸的局部麻醉模拟器触觉注射器。
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-15 DOI: 10.1109/TOH.2024.3353924
Ken Iiyoshi;Shadi Khazaaleh;Ahmed S. Dalaq;Mohammed F. Daqaq;Georgios Korres;Mohamad Eid
{"title":"Origami-Based Haptic Syringe for Local Anesthesia Simulator","authors":"Ken Iiyoshi;Shadi Khazaaleh;Ahmed S. Dalaq;Mohammed F. Daqaq;Georgios Korres;Mohamad Eid","doi":"10.1109/TOH.2024.3353924","DOIUrl":"10.1109/TOH.2024.3353924","url":null,"abstract":"Although medical simulators have benefited from the use of haptics and virtual reality (VR) for decades, the former has become the bottleneck in producing a low-cost, compact, and accurate training experience. This is particularly the case for the inferior alveolar nerve block (IANB) procedure in dentistry, which is one of the most difficult motor skills to acquire. As existing works are still oversimplified or overcomplicated for practical deployment, we introduce an origami-based haptic syringe interface for IANB local anesthesia training. By harnessing the versatile mechanical tunability of the Kresling origami pattern, our interface simulated the tactile experience of the plunger while injecting the anesthetic solution. We present the design, development, and characterization process, as well as a preliminary usability study. The force profile generated by the syringe interface is perceptually similar with that of the Carpule syringe. The usability study suggests that the haptic syringe significantly improves the IANB training simulation and its potential to be utilized in several other medical training/simulation applications.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"39-44"},"PeriodicalIF":2.9,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Normal Force Intensity on Tactile Motion Speed Perception Based on Spatiotemporal Cue. 基于时空线索的正常力强度对触觉运动速度感知的影响
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-10 DOI: 10.1109/TOH.2024.3352042
Yusuke Ujitoko, Yuko Takenaka, Koichi Hirota
{"title":"Effect of Normal Force Intensity on Tactile Motion Speed Perception Based on Spatiotemporal Cue.","authors":"Yusuke Ujitoko, Yuko Takenaka, Koichi Hirota","doi":"10.1109/TOH.2024.3352042","DOIUrl":"https://doi.org/10.1109/TOH.2024.3352042","url":null,"abstract":"<p><p>While the relative motion between the skin and objects in contact with it is essential to everyday tactile experiences, our understanding of how tactile motion is perceived via human tactile function is limited. Previous studies have explored the effect of normal force on speed perception under conditions where multiple motion cues on the skin (spatiotemporal cue, tangential skin deformation cue, and slip-induced vibration cue) were integrated. However, the effect of the normal force on speed perception in terms of each motion cue remains unclear since the multiple motion cues have not been adequately separated in the previously reported experiments. In this study, we aim to elucidate the effect of normal force in situations where the speed perception of tactile motion is based solely on a spatiotemporal cue. We developed a pin-array display which allowed us to vary the intensity of the normal force without causing tangential forces or slip-induced vibrations. Using the display, we conducted two psychophysical experiments. In Experiment 1, we found that the speed of the object was perceived to be 1.12-1.14 times faster when the intensity of the normal force was doubled. In Experiment 2, we did not observe significant differences in the discriminability of tactile speed caused by differences in normal force intensity. Our experimental results are of scientific significance and offer insights for engineering applications when using haptic displays that can only provide spatiotemporal cues represented by normal forces.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity 研究强度和频率对振动触觉空间敏锐度的影响
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-08 DOI: 10.1109/TOH.2024.3350929
Bingjian Huang;Paul H. Dietz;Daniel Wigdor
{"title":"Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity","authors":"Bingjian Huang;Paul H. Dietz;Daniel Wigdor","doi":"10.1109/TOH.2024.3350929","DOIUrl":"10.1109/TOH.2024.3350929","url":null,"abstract":"Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"405-416"},"PeriodicalIF":2.4,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment 虚拟机器人手术培训环境中的触觉引导和触觉误差放大。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-05 DOI: 10.1109/TOH.2024.3350128
Yousi A. Oquendo;Margaret M. Coad;Sherry M. Wren;Thomas S. Lendvay;Ilana Nisky;Anthony M. Jarc;Allison M. Okamura;Zonghe Chua
{"title":"Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment","authors":"Yousi A. Oquendo;Margaret M. Coad;Sherry M. Wren;Thomas S. Lendvay;Ilana Nisky;Anthony M. Jarc;Allison M. Okamura;Zonghe Chua","doi":"10.1109/TOH.2024.3350128","DOIUrl":"10.1109/TOH.2024.3350128","url":null,"abstract":"Teleoperated robotic systems have introduced more intuitive control for minimally invasive surgery, but the optimal method for training remains unknown. Recent motor learning studies have demonstrated that exaggeration of errors helps trainees learn to perform tasks with greater speed and accuracy. We hypothesized that training in a force field that pushes the user away from a desired path would improve their performance on a virtual reality ring-on-wire task. Thirty-eight surgical novices trained under a no-force, guidance, or error-amplifying force field over five days. Completion time, translational and rotational path error, and combined error-time were evaluated under no force field on the final day. The groups significantly differed in combined error-time, with the guidance group performing the worst. Error-amplifying field participants did not plateau in their performance during training, suggesting that learning was still ongoing. Guidance field participants had the worst performance on the final day, confirming the guidance hypothesis. Observed trends also suggested that participants who had high initial path error benefited more from guidance. Error-amplifying and error-reducing haptic training for robot-assisted telesurgery benefits trainees of different abilities differently, with our results indicating that participants with high initial combined error-time benefited more from guidance and error-amplifying force field training.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"417-428"},"PeriodicalIF":2.4,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representing Fine Texture of Pencil Hardness by High-Frequency Vibrotactile Equivalence Conversion Using Ultra-Thin PZT-MEMS Vibrators 利用超薄 PZT-MEMS 振动器进行高频振动触觉等效转换,表现铅笔硬度的细微纹理。
IF 2.9 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2024-01-05 DOI: 10.1109/TOH.2023.3349307
Masamune Waga;Toru Matsubara;Masashi Konyo;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Satoshi Tadokoro
{"title":"Representing Fine Texture of Pencil Hardness by High-Frequency Vibrotactile Equivalence Conversion Using Ultra-Thin PZT-MEMS Vibrators","authors":"Masamune Waga;Toru Matsubara;Masashi Konyo;Toshihiro Takeshita;Yusuke Takei;Takeshi Kobayashi;Satoshi Tadokoro","doi":"10.1109/TOH.2023.3349307","DOIUrl":"10.1109/TOH.2023.3349307","url":null,"abstract":"This study aims to represent fine texture differences in pencil hardness using intensity segment modulation (ISM), a sensory equivalent conversion method of vibration from high to low frequencies. This method enables the presentation of delicate tactile sensations even with small transducers. We integrated this approach in the world's thinnest ultra-thin PZT-MEMS vibrator with a stylus-type device. The vibration waveforms of four types of pencil hardness were captured under the same conditions, and the differences in the frequency components were confirmed. We compared the fine texture feelings under raw signal, ISM, and ISM below 1 kHz conditions by conducting discrimination tests and subjective similarity evaluations. The results showed that ISM could reproduce similar feelings of the pencil hardness.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 1","pages":"8-13"},"PeriodicalIF":2.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Origami-Inspired Vibrotactile Actuator (OriVib): Design and Characterization 折纸启发振动触觉致动器(OriVib):设计与表征。
IF 2.4 3区 计算机科学
IEEE Transactions on Haptics Pub Date : 2023-12-29 DOI: 10.1109/TOH.2023.3348189
Georgios Korres;Ken Iiyoshi;Mohamad Eid
{"title":"Origami-Inspired Vibrotactile Actuator (OriVib): Design and Characterization","authors":"Georgios Korres;Ken Iiyoshi;Mohamad Eid","doi":"10.1109/TOH.2023.3348189","DOIUrl":"10.1109/TOH.2023.3348189","url":null,"abstract":"The use of vibrotactile feedback, in place of a full-fledged force feedback experience, has recently received increased attention in haptic communities due to their clear advantages in terms of cost, expressiveness, and wearability. However, designers and engineers are required to trade off a number of technical challenges when designing vibrotactile actuators, including expressiveness (a wide band of actuation frequency), flexibility, and the complexity of the manufacturing process. To address these challenges, we present the design and characterization of an origami-inspired flexible vibrotactile actuator, named OriVib, with a tunable resonance frequency (expressiveness), an origami-inspired design (flexible, soft contact with the human body), and a streamlined manufacturing process (low-cost). Based on its characterization, the fabricated OriVib actuator with 54 mm diameter can produce up to 1.2 g vibration intensity where the vibration intensity increases linearly from 6-11 V input. The resonance frequency is tunable through the characteristic diameter (the resonance frequency decreases in an almost inversely proportional fashion as the diameter increases). As for the thermal signature, the OriVib actuator maintains its temperature below 38 \u0000<inline-formula><tex-math>$^{o}C$</tex-math></inline-formula>\u0000 when actuated within 6-8 V. In terms of repeatability, the OriVib maintained an average vibration intensity of 0.849 g (standard deviation 0.035 g) for at least 2 million cycles. These results validate the effectiveness of the OriVib actuator to offer an expressive, low-cost, and flexible vibrotactile actuator.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"496-502"},"PeriodicalIF":2.4,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信