Effects of Wall and Freespace Damping Levels on Virtual Wall Stiffness Classification

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Emma Treadway;Kristian Journet;Andrew Deering;Cora Lewis;Noelle Poquiz
{"title":"Effects of Wall and Freespace Damping Levels on Virtual Wall Stiffness Classification","authors":"Emma Treadway;Kristian Journet;Andrew Deering;Cora Lewis;Noelle Poquiz","doi":"10.1109/TOH.2024.3434975","DOIUrl":null,"url":null,"abstract":"Virtual damping is often employed to improve stability in virtual environments, but it has previously been found to bias perception of stiffness, with its effects differing when it is introduced locally within a wall/object or globally in both the wall and in freespace. Since many potential applications of haptic rendering involve not only comparisons between two environments, but also the ability to recognize rendered environments as belonging to different categories, it is important to understand the perceptual impacts of freespace and wall damping on stiffness classification ability. This study explores the effects of varying levels of freespace and wall damping on users' ability to classify virtual walls by their stiffness. Results indicate that freespace damping improves wall classification if the walls are damped, but will impair classification of undamped walls. These findings suggest that, in situations where users are expected to recognize and classify various stiffnesses, freespace damping can be a factor in narrowing or widening gaps in extended rate-hardness between softer and stiffer walls.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"794-805"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10613442/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual damping is often employed to improve stability in virtual environments, but it has previously been found to bias perception of stiffness, with its effects differing when it is introduced locally within a wall/object or globally in both the wall and in freespace. Since many potential applications of haptic rendering involve not only comparisons between two environments, but also the ability to recognize rendered environments as belonging to different categories, it is important to understand the perceptual impacts of freespace and wall damping on stiffness classification ability. This study explores the effects of varying levels of freespace and wall damping on users' ability to classify virtual walls by their stiffness. Results indicate that freespace damping improves wall classification if the walls are damped, but will impair classification of undamped walls. These findings suggest that, in situations where users are expected to recognize and classify various stiffnesses, freespace damping can be a factor in narrowing or widening gaps in extended rate-hardness between softer and stiffer walls.
墙体和自由空间阻尼水平对虚拟墙体刚度分类的影响。
虚拟阻尼经常被用来提高虚拟环境的稳定性,但以前曾发现它对刚度的感知会产生偏差,当在墙壁/物体的局部或在墙壁和自由空间的全局引入虚拟阻尼时,其效果会有所不同。由于触觉渲染的许多潜在应用不仅涉及两个环境之间的比较,还涉及识别渲染环境属于不同类别的能力,因此了解自由空间和墙壁阻尼对刚度分类能力的感知影响非常重要。本研究探讨了不同程度的自由空间和墙壁阻尼对用户根据刚度对虚拟墙壁进行分类的能力的影响。结果表明,如果墙体有阻尼,自由空间阻尼会提高墙体分类能力,但会影响无阻尼墙体的分类能力。这些研究结果表明,在用户需要识别各种刚度并对其进行分类的情况下,自由空间阻尼可能是缩小或扩大较软墙体和较硬墙体之间扩展速率-硬度差距的一个因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信