Samuel Verret;Thierry Laliberté;Raphaël Cloutier;Clément Gosselin
{"title":"Synthesis, Dynamic Modeling, Prototyping and Control of a Handheld Rotational Inertia Generator","authors":"Samuel Verret;Thierry Laliberté;Raphaël Cloutier;Clément Gosselin","doi":"10.1109/TOH.2024.3370111","DOIUrl":"10.1109/TOH.2024.3370111","url":null,"abstract":"This paper explores the design and experimental validation of a three-degree-of-freedom variable inertia generator. An inertia generator is a handheld haptic device that renders a prescribed inertia. In the mechanism proposed in this paper, three-dimensional torque feedback is achieved by accelerating three pairs of flywheels mounted on orthogonal axes. While the primary objective of this work is to design an inertia generator, this study also includes developing other functionalities for the device that exploit its torque generation capabilities. These include the ability to generate a predefined torque profile and to simulate a viscous environment through damping, which are both utilized to assess the device's performance. The device proved to accurately render the necessary torques for every functionality while presenting some limitations for damping and rendering an inertia smaller than the device's inherent inertia.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"591-603"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Judith Weda;Angelika Mader;Hamid Souri;Edwin Dertien;Jan van Erp
{"title":"Perception Threshold for Pressure by a Soft Textile Actuator","authors":"Judith Weda;Angelika Mader;Hamid Souri;Edwin Dertien;Jan van Erp","doi":"10.1109/TOH.2024.3370835","DOIUrl":"10.1109/TOH.2024.3370835","url":null,"abstract":"Electroactive textile (EAT) has the potential to apply pressure stimuli to the skin, e.g. in the form of a squeeze on the arm. To present a perceivable haptic sensation we need to know the perception threshold for such stimuli. We designed a set-up based on motorized ribbons around the arm with five different widths (range 3 – 49 mm) for psychophysical studies. We investigated the perception threshold of force pressure and ribbon reduction in two studies, using two methods (PSI and 1up/3down staircase), comparing sex, the left and right arm, the lower and upper arm, and stimulated surface area with a total of 57 participants. We found that larger stimulation surfaces require less pressure to reach the perception threshold (0.151 N per cm\u0000<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\u0000 for 3 mm width, 0.00972 N per cm\u0000<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>\u0000 for 49 mm width on the lower arm). This indicates a spatial summation effect for these pressure stimuli. We did not find significant differences in perception threshold for the left and right arm and, the upper and lower arm. Between male and female participants we found significant differences for two conditions (10 mm and 25 mm) in Experiment 1, but we could not reproduce this in Experiment 2.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"625-636"},"PeriodicalIF":2.4,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10452368","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boxue Shan;Congying Liu;Yuan Guo;Yiheng Wang;Weidong Guo;Yuru Zhang;Dangxiao Wang
{"title":"A Multi-Layer Stacked Microfluidic Tactile Display With High Spatial Resolution","authors":"Boxue Shan;Congying Liu;Yuan Guo;Yiheng Wang;Weidong Guo;Yuru Zhang;Dangxiao Wang","doi":"10.1109/TOH.2024.3367708","DOIUrl":"10.1109/TOH.2024.3367708","url":null,"abstract":"Pneumatic tactile displays dynamically customize surface morphological features with reconfigurable arrays of independently addressable actuators. However, their ability to render detailed tactile patterns or fine textures is limited by the low spatial resolution. For pneumatic tactile displays, the high-density integration of pneumatic actuators within a small space (fingertip) poses a significant challenge in terms of pneumatic circuit wiring. In contrast to the structure with a single-layer layout of pipes, we propose a multi-layered stacked microfluidic pipe structure that allows for a higher density of actuators and retains their independent actuation capabilities. Based on the proposed structure, we developed a soft microfluidic tactile display with a spatial resolution of 1.25 mm. The device consists of a 5 × 5 array of independently addressable microactuators, driven by pneumatic pressure, each of which enables independent actuation of the surface film and continuous control of the height. At a relative pressure of 1000 mbar, the actuator produced a perceptible out-of-plane deformation of 0.145 mm and a force of 17.7 mN. User studies showed that subjects can easily distinguish eight tactile patterns with 96% accuracy.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"546-556"},"PeriodicalIF":2.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comparative Study of Physical and Haptic Exhibits in an Informal Learning Environment","authors":"Dajin Lee;Daehyeon Nam;Jinhyuk Yoon;Dukchan Yoon;Seokwon Jeong;Keehoon Kim;Seungmoon Choi","doi":"10.1109/TOH.2024.3368429","DOIUrl":"10.1109/TOH.2024.3368429","url":null,"abstract":"Virtual exhibits with haptic feedback offer greater flexibility in diversifying content and providing digital affordance, even at a lower cost, than physical exhibits. However, few studies addressed the value of such haptics-enabled educational systems in informal learning environments. In this study, we investigated the feasibility of a haptic exhibit as an alternative or supplement for a traditional physical exhibit in a science museum. We developed a two-degree-of-freedom cable-driven haptic device to simulate physical interactions on a large visual display. Choosing a seesaw-like physical exhibit available in a local museum, we designed and implemented a virtual lever simulation closely embodying the physics principles that the physical exhibit showcased. Then, we conducted an observational user study with children to compare the exhibit-visitor interaction behaviors, learning effects, and self-reported motivation and enjoyment between the physical and virtual exhibits. The results revealed that the visitors well-received and engaged with the haptic exhibit, instantiating its potential application in diverse learning settings. We hope that our research encourages further exploration of innovative haptic exhibits that enhance users' learning experiences across various environments.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"557-566"},"PeriodicalIF":2.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Learning Effect in Joystick Tactile Guidance","authors":"Pavel Zikmund;Michaela Horpatzká;Miroslav Macík","doi":"10.1109/TOH.2024.3368663","DOIUrl":"10.1109/TOH.2024.3368663","url":null,"abstract":"Haptic feedback is a method to provide tactile guidance in scenarios requiring multiple senses and divided attention like aviation. Earlier tests on a flight simulator and an in-flight test using the proposed tactile guidance method have shown the need to study its learning process. In this study, twelve participants completed two tactile guidance tasks without visual feedback across twelve sessions to analyze the learning effect. The paper shows an improvement between sessions in guidance accuracy, response time, and self-assessed workload. On the other hand, reaction delay is not affected by the training. The percentage improvement between the initial and trained skills reached 30% in guidance accuracy performance.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"567-577"},"PeriodicalIF":2.4,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Touch Cannot Attentionally Select Signals Based on Feature Binding","authors":"Scinob Kuroki;Shin'ya Nishida","doi":"10.1109/TOH.2024.3367944","DOIUrl":"10.1109/TOH.2024.3367944","url":null,"abstract":"For human sensory processing, cluttered real-world environments where signals from multiple objects or events overlap are challenging. A cognitive function useful in such situations is an attentional selection of one signal from others based on the difference in bound feature. For instance, one can visually select a specific orientation if it is uniquely colored. However, here we show that unlike vision, touch is very poor at feature-based signal selection. We presented two-orthogonal line segments with different vibration textures to a fingertip. Though observers were markedly sensitive to each feature, they were generally unable to identify the orientation bound with a specific texture when the segments were presented simultaneously or in rapid alternation. A similar failure was observed for a direction judgment task. These results demonstrate a general cognitive limitation of touch, highlighting its unique bias to integrate multiple signals into a global event rather than segment them into separate events.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"604-613"},"PeriodicalIF":2.4,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10440528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle T. Yoshida;Zane A. Zook;Hojung Choi;Ming Luo;Marcia K. O'Malley;Allison M. Okamura
{"title":"Design and Evaluation of a 3-DoF Haptic Device for Directional Shear Cues on the Forearm","authors":"Kyle T. Yoshida;Zane A. Zook;Hojung Choi;Ming Luo;Marcia K. O'Malley;Allison M. Okamura","doi":"10.1109/TOH.2024.3365669","DOIUrl":"10.1109/TOH.2024.3365669","url":null,"abstract":"Wearable haptic devices on the forearm can relay information from virtual agents, robots, and other humans while leaving the hands free. We introduce and test a new wearable haptic device that uses soft actuators to provide normal and shear force to the skin of the forearm. A rigid housing and gear motor are used to control the direction of the shear force. A 6-axis force/torque sensor, distance sensor, and pressure sensors are integrated to quantify how the soft tactor interacts with the skin. When worn by participants, the device delivered consistent shear forces of up to 0.64 N and normal forces of up to 0.56 N over distances as large as 14.3 mm. To understand cue saliency, we conducted a user study asking participants to identify linear shear directional cues in a 4-direction task and an 8-direction task with different cue speeds, travel distances, and contact patterns. Participants identified cues with longer travel distances best, with an 85.1% accuracy in the 4-direction task, and a 43.5% accuracy in the 8-direction task. Participants had a directional bias, with a preferential response in the axis towards and away from the wrist bone.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"483-495"},"PeriodicalIF":2.4,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Hydraulic Haptic Actuator for Simulation of Cardiac Catheters","authors":"Chengjie Li;Doo Yong Lee","doi":"10.1109/TOH.2024.3364689","DOIUrl":"10.1109/TOH.2024.3364689","url":null,"abstract":"This article presents a haptic actuator made of silicone rubber to provide both passive and active haptic forces for catheter simulations. The haptic actuator has a torus outer shape with an ellipse-shaped inside chamber which is actuated by hydraulic pressure. Expansion of the chamber by providing positive pressure can squeeze the inside passage to resist the catheter traveling through. Further expansion can hold and push back the catheter in the axial direction to render active haptic forces. The size of the catheter passage is increased by providing negative pressure to the chamber, allowing various diameters of the actual medical catheters to be used and exchanged during the simulation. The diameter of the catheter passage can be enlarged up to 1.6 times to allow 5 to 7 Fr (1 Fr = 1/3 mm) medical catheters to pass through. Experiment results show that the proposed haptic actuator can render 0 to 2.0 N passive feedback force, and a maximum of 2.0 N active feedback force, sufficient for the cardiac catheter simulation. The haptic actuator can render the commanded force profile with 0.10 N RMS (root-mean-squares) and 10.51% L2-norm relative errors.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"461-470"},"PeriodicalIF":2.4,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139722359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Morisaki;Takaaki Kamigaki;Masahiro Fujiwara;Yasutoshi Makino;Hiroyuki Shinoda
{"title":"UltLever: Ultrasound-Driven Passive Haptic Actuator Based on Amplifying Radiation Force Using a Simple Lever Mechanism","authors":"Tao Morisaki;Takaaki Kamigaki;Masahiro Fujiwara;Yasutoshi Makino;Hiroyuki Shinoda","doi":"10.1109/TOH.2024.3363764","DOIUrl":"10.1109/TOH.2024.3363764","url":null,"abstract":"A lightweight haptic display that does not interfere with the user's natural movement is required for an immersive haptic experience. This study proposes a lightweight, powerful, and responsive passive haptic actuator driven by airborne focused ultrasound. This 6.2 g completely plastic passive device amplifies an applied ultrasound radiation force by a factor of 35 using a simple lever mechanism, presenting an amplified force of 0.7 N to the user's finger pad. 2–30 Hz vibration can also be presented. Since the radiation force is presented at the speed of sound, the amplified force is presented at high speed even with the high amplification rate of a lever, achieving such strong force and vibration presentation. Physical measurements showed that the amplified force was 0.7 N for the 20.48 mN input radiation force, and the amplitude of the presented vibration was over 0.1 N at 2–30 Hz. A psychophysical experiment showed that the vibration and force were perceivable with a device output level of −7.7 dB. In the future, we will explore methodologies around device design to present desired tactile sensations.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"471-482"},"PeriodicalIF":2.4,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10428111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Skin-Stretch Haptic Feedback Augmentation Improves Performance in a Simulated Laparoscopic Palpation Task","authors":"Charlélie Saudrais;Bernard Bayle;Marie-Aude Vitrani;Fabien Vérité","doi":"10.1109/TOH.2024.3363422","DOIUrl":"10.1109/TOH.2024.3363422","url":null,"abstract":"Laparoscopic surgery brings substantial benefits to patients. However, it remains challenging for surgeons because of motion constraints and perception limitations. Notably, the perception of interactions with organs is largely compromised. This paper evaluates the effectiveness of a forearm-based skin-stretch haptic feedback system rendering surgical tool tip force. Twenty novice participants had to discern the stiffness of samples to investigate stiffness perception in a simulated laparoscopic task. The experimental protocol involved manipulating samples with three difficulty levels and testing three feedback conditions: no augmentation, visual feedback, and tactile feedback. The results demonstrate that feedback significantly enhances the success rate of laparoscopic palpation tasks. The proposed tactile feedback boosts confidence and task speed and reduces peak force and perceived workload. These benefits become even more pronounced when difficulty increases. These promising findings affirm the value of skin-stretch haptic feedback augmentation in improving performance for simulated laparoscopy tasks, paving the way for more integrated and deployable devices for the operating room.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 4","pages":"578-590"},"PeriodicalIF":2.4,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139702372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}