IEEE Journal of Quantum Electronics最新文献

筛选
英文 中文
High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN 基于 LSTM-CNN 的高精度、快速分布式光学频域反射仪温度数据解调算法
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-10-02 DOI: 10.1109/JQE.2024.3471988
Lei Huang;Min Liu;Yingqi Cui;Zhaohao Zhu;Ping Shum
{"title":"High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN","authors":"Lei Huang;Min Liu;Yingqi Cui;Zhaohao Zhu;Ping Shum","doi":"10.1109/JQE.2024.3471988","DOIUrl":"https://doi.org/10.1109/JQE.2024.3471988","url":null,"abstract":"A demodulation algorithm based on the LSTM-CNN is proposed to simultaneously achieve the demodulation of temperature data from distributed optical frequency domain reflectometry (OFDR). As for the local measurement range along the distributed fiber, the LSTM-CNN can achieve an average mean absolutely error (MAE) of only 0.0393 and the average demodulation time is only 0.1507 seconds. The comparison with the cross-correlation algorithm, Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) demonstrates that the MAE is reduced by 85.98%, 77.23%, 88.25%, 80.95%, and 91.82%, and the average time is faster 38.19 times, 8.71 times, 3.28 times, 1.37 times, and 2.45 times, respectively. As for the full measurement range of the distributed fiber, the temperature distribution curve demodulated by LSTM-CNN is found to be consistent with the actual temperature distribution curve and the average demodulation time is 0.371 seconds, providing a new method for the temperature data demodulation in the distributed OFDR sensing system.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-Random Generator Based on a Photonic Neuromorphic Physical Unclonable Function 基于光子神经形态物理不可克隆函数的伪随机发生器
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-10-01 DOI: 10.1109/JQE.2024.3471951
Dimitris Dermanis;Panagiotis Rizomiliotis;Adonis Bogris;Charis Mesaritakis
{"title":"Pseudo-Random Generator Based on a Photonic Neuromorphic Physical Unclonable Function","authors":"Dimitris Dermanis;Panagiotis Rizomiliotis;Adonis Bogris;Charis Mesaritakis","doi":"10.1109/JQE.2024.3471951","DOIUrl":"https://doi.org/10.1109/JQE.2024.3471951","url":null,"abstract":"In this work we provide numerical results concerning a silicon-on-insulator photonic neuromorphic circuit configured as a physical unclonable function. The proposed scheme is enhanced with the capability to be operated as an unconventional deterministic pseudo-random number generator, suitable for cryptographic applications that alleviates the need for key storage in non-volatile digital media. The proposed photonic neuromorphic scheme is able to offer NIST test compatible numbers with an extremely low false positive/negative probability below 10-14. The proposed scheme offers multi-functional capabilities due to the fact that it can be simultaneously used as an integrated photonic accelerator for machine-learning applications and as a hardware root of trust.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-8"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463153
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3463153","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463153","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C3-C3"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463157
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3463157","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463157","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C2-C2"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697354","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3463151
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3463151","DOIUrl":"https://doi.org/10.1109/JQE.2024.3463151","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"C4-C4"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TechRxiv: Share Your Preprint Research with the World! TechRxiv:与世界分享您的预印本研究成果!
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-27 DOI: 10.1109/JQE.2024.3465253
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/JQE.2024.3465253","DOIUrl":"https://doi.org/10.1109/JQE.2024.3465253","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-1"},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697332","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals 具有可调脉冲链序列和间隔的脉冲串模式 Nd:YAG/Cr⁴⁺:YAG 激光器
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468999
Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng
{"title":"Burst-Mode Nd: YAG/Cr⁴⁺:YAG Laser With Tunable Pulse Chain Sequence and Intervals","authors":"Nihui Zhang;Di Xin;Zhenjiao Shan;Fengxin Dong;Xuyan Zhou;Hongbo Zhang;Wanhua Zheng","doi":"10.1109/JQE.2024.3468999","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468999","url":null,"abstract":"We employed 808 nm and 885 nm pumping sources for time-shared pumping of the compact Nd:YAG/Cr4+:YAG passively Q-switched laser by incorporating time and sequence modulation functions into the electrical modulation signals. Through adjusting the pumping peak powers and pulse widths of the two pump sources, various burst-mode lasers were realized. The repetition frequency and time intervals between pulse chain sequences, as well as the intervals between sub-pulses within a sequence, could be adjustable, addressing the challenge of precise timing control in burst-mode lasers. The time-shared pumping Q-switched laser displayed significantly better controllable pulse characteristic compared to the conventional single-pulse output mode of burst-mode lasers. In conclusion, this work has effectively expanded the application scope of burst-mode lasers, representing a novel contribution to the field.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-7"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of Relative Intensity Noise of Distributed-Feedback Fiber Lasers Considering Spatial Mode Profile 考虑空间模式轮廓的分布式反馈光纤激光器相对强度噪声数值分析
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468998
Xuanchen Guo;Yinyang Pei;Jianzhong Zhang
{"title":"Numerical Analysis of Relative Intensity Noise of Distributed-Feedback Fiber Lasers Considering Spatial Mode Profile","authors":"Xuanchen Guo;Yinyang Pei;Jianzhong Zhang","doi":"10.1109/JQE.2024.3468998","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468998","url":null,"abstract":"The spatial mode profile of distributed feedback (DFB) lasers is a unique characteristic that distinguishes them from lasers based on F-P cavities. It is utilized to achieve single-mode operation and improve relative intensity noise (RIN) performance. The effective cavity length method, as an approximate method for spatial mode profiling, is conveniently used for theoretical analysis. In this paper, the RIN of DFB fiber lasers was analyzed by considering their spatial mode profile without any approximations, and the results were compared with experimental findings. Additionally, numerical simulations of DFB fiber lasers with different structures were conducted to analyze their noise characteristics and the impact of spatial mode profile on the RIN of the lasers was discussed. The spatial mode profile was solved using the shooting method, with boundary conditions provided based on the erbium ion gain model. The spatial mode profile was then substituted into the RIN expression, yielding the RIN of DFB lasers influenced by spatial mode profile. This physical model is widely applicable and can be used to effectively analyze the dynamic characteristics of most DFB fiber laser structures.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-10"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Cavity Analysis Method Considering Dynamic Change of Thermal Lens Effect 考虑热透镜效应动态变化的激光腔分析方法
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-26 DOI: 10.1109/JQE.2024.3468994
Yuko Kono;Shigeyuki Takagi
{"title":"Laser Cavity Analysis Method Considering Dynamic Change of Thermal Lens Effect","authors":"Yuko Kono;Shigeyuki Takagi","doi":"10.1109/JQE.2024.3468994","DOIUrl":"https://doi.org/10.1109/JQE.2024.3468994","url":null,"abstract":"We have developed an experimental method for estimating the thermal lens effect of a Nd:YAG rod during laser oscillation in a high-power pulsed laser. By combining a stability analysis by cavity simulation with the change in the focal length of the rod and the beam quality according to the input, we were able to correct the reduction of the thermal effect on the rod due to laser oscillation. The proposed method makes it possible to design a resonator that appropriately considers the stability of the resonator that changes in accordance with the input power.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-7"},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-Compact, Fully Packaged Broadband Thin-Film Lithium Niobate Modulator for Microwave Photonics 用于微波光子学的超小型全封装宽带铌酸锂薄膜调制器
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-09-18 DOI: 10.1109/JQE.2024.3462950
Jinye Li;Dechen Li;Peng Wang;Jinming Tao;Run Li;Qianqian Jia;Jianguo Liu
{"title":"Ultra-Compact, Fully Packaged Broadband Thin-Film Lithium Niobate Modulator for Microwave Photonics","authors":"Jinye Li;Dechen Li;Peng Wang;Jinming Tao;Run Li;Qianqian Jia;Jianguo Liu","doi":"10.1109/JQE.2024.3462950","DOIUrl":"10.1109/JQE.2024.3462950","url":null,"abstract":"Broadband, compact electro-optic modulator is one of the key components in optical communication networks and microwave photonic systems. Here, this paper reports a thin-film lithium niobate electro-optic modulator with a 3 dB electro-optic bandwidth greater than 50 GHz after encapsulation, and discusses the electro-optic response and thermo-optic phase-shifting performance of the device. The modulator chip has a 3 dB electro-optic bandwidth greater than 67 GHz, and the fully encapsulated device has a small size (31 mm \u0000<inline-formula> <tex-math>$times 10$ </tex-math></inline-formula>\u0000 mm \u0000<inline-formula> <tex-math>$times 5.3$ </tex-math></inline-formula>\u0000 mm) while having a high electro-optic bandwidth of up to 51 GHz and an excellent half-wave voltage length product as low as 2.5 V\u0000<inline-formula> <tex-math>$cdot$ </tex-math></inline-formula>\u0000 cm. The DC bias is thermally shifted with a 2.3V half-wave voltage for reliable and stable bias characteristics.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信