Thermal and Stress Analysis on Multi-Ridge GaN-Based Laser Diodes

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Minghang Liang;Jiahao Dong;Yu He;Jingxian Liang;Pengyan Wen
{"title":"Thermal and Stress Analysis on Multi-Ridge GaN-Based Laser Diodes","authors":"Minghang Liang;Jiahao Dong;Yu He;Jingxian Liang;Pengyan Wen","doi":"10.1109/JQE.2025.3583998","DOIUrl":null,"url":null,"abstract":"Thermal effects and stress play important roles in both performance and reliability of GaN-based laser diodes, particularly in multi-ridge lasers designed for high-power applications. In this paper, we studied the temperature and stress distributions within a five-ridge GaN-based laser diode. In the cross-ridge direction, the laser chip with a ridge spacing configuration of 64-76-76-<inline-formula> <tex-math>$64~\\mu $ </tex-math></inline-formula> m exhibited the best temperature uniformity while an isometric ridge spacing of <inline-formula> <tex-math>$60~\\mu $ </tex-math></inline-formula> m demonstrated the best stress uniformity. Furthermore, we proposed a tapered heatsink design to enhance the temperature and stress uniformity along the ridge. Our results indicated that, in comparison with the conventional structure, the tapered heatsink reduced the temperature difference along the ridge by 59%, leading to relatively lower temperature at both facets. Additionally, the tapered heatsink reduced the average stress by 26%. This study provides theoretical foundations and practical guidelines for the thermal and stress design of semiconductor lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 4","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11053812/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal effects and stress play important roles in both performance and reliability of GaN-based laser diodes, particularly in multi-ridge lasers designed for high-power applications. In this paper, we studied the temperature and stress distributions within a five-ridge GaN-based laser diode. In the cross-ridge direction, the laser chip with a ridge spacing configuration of 64-76-76- $64~\mu $ m exhibited the best temperature uniformity while an isometric ridge spacing of $60~\mu $ m demonstrated the best stress uniformity. Furthermore, we proposed a tapered heatsink design to enhance the temperature and stress uniformity along the ridge. Our results indicated that, in comparison with the conventional structure, the tapered heatsink reduced the temperature difference along the ridge by 59%, leading to relatively lower temperature at both facets. Additionally, the tapered heatsink reduced the average stress by 26%. This study provides theoretical foundations and practical guidelines for the thermal and stress design of semiconductor lasers.
多岭氮化镓基激光二极管的热应力分析
热效应和应力对氮化镓基激光二极管的性能和可靠性起着重要的作用,特别是在高功率应用的多脊激光器中。本文研究了五脊氮化镓基激光二极管内部的温度和应力分布。在横脊方向上,脊间距为64~ 76 ~ 76 ~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $64~ $60~ $60~ $ m的激光芯片温度均匀性最好;此外,我们提出了一个锥形散热器设计,以提高沿脊的温度和应力均匀性。我们的研究结果表明,与传统结构相比,锥形散热器将沿脊的温差降低了59%,从而导致两个方面的温度相对较低。此外,锥形散热器将平均应力降低了26%。本研究为半导体激光器的热应力设计提供了理论基础和实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信