{"title":"High-Power Noise-Like Pulse Generation in a Tm-Ho Co-Doped Fiber Laser","authors":"Longwei Luo;Huanhuan Li;Xinhao Zhou;Can Li;Junjie Zhang;Shiqing Xu","doi":"10.1109/JQE.2025.3584001","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate a high-performance passively mode-locked thulium-holmium (Tm-Ho) co-doped fiber laser utilizing a single-mode fiber-few-mode fiber-single-mode fiber (SMF-FMF-SMF) structure as an effective saturable absorber (SA) for noise-like pulse (NLP) generation. By solely adjusting the output coupling ratio from 30% to 50%, the maximum average output power at a pump power of 4.5 W is significantly increased from 238 mW to 391.2 mW in a single-pulse operation. The corresponding maximum pulse energy reaches 99.5 nJ at a repetition rate of 3.933 MHz, with a broad 3 dB bandwidth of 33.40 nm centered at 1948 nm. The laser exhibits excellent stability, as evidenced by a signal-to-noise ratio (SNR) of 69 dB. These results highlight the effectiveness of the SMF-FMF-SMF structure in improving output power and pulse characteristics, offering a promising approach for advancing high-energy mode-locked fiber lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 4","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11053848/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we demonstrate a high-performance passively mode-locked thulium-holmium (Tm-Ho) co-doped fiber laser utilizing a single-mode fiber-few-mode fiber-single-mode fiber (SMF-FMF-SMF) structure as an effective saturable absorber (SA) for noise-like pulse (NLP) generation. By solely adjusting the output coupling ratio from 30% to 50%, the maximum average output power at a pump power of 4.5 W is significantly increased from 238 mW to 391.2 mW in a single-pulse operation. The corresponding maximum pulse energy reaches 99.5 nJ at a repetition rate of 3.933 MHz, with a broad 3 dB bandwidth of 33.40 nm centered at 1948 nm. The laser exhibits excellent stability, as evidenced by a signal-to-noise ratio (SNR) of 69 dB. These results highlight the effectiveness of the SMF-FMF-SMF structure in improving output power and pulse characteristics, offering a promising approach for advancing high-energy mode-locked fiber lasers.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.