Su Ik Park;Oh Kee Kwon;Chul Wook Lee;Dong-Soo Shin;Jong-In Shim
{"title":"Heater-Tuned Single-Grating Distributed Bragg Reflector Lasers With a Thermal Confinement Waveguide Structure","authors":"Su Ik Park;Oh Kee Kwon;Chul Wook Lee;Dong-Soo Shin;Jong-In Shim","doi":"10.1109/JQE.2025.3588833","DOIUrl":null,"url":null,"abstract":"To evaluate the effect of thermally isolated waveguide structure in a heater-based tunable distributed Bragg reflector (DBR) laser, the temperature distribution and thermo-optical characteristics are investigated at various heater powers. The reflection spectrum of the DBR is designed, and the tuning characteristics of the fabricated DBR laser are compared with simulation results. It is found that the waveguide temperature increases linearly with the heater power, whereas the effective refractive index increases nonlinearly, resulting in the corresponding nonlinear wavelength-tuning characteristics. In order to obtain efficient thermal tuning characteristics, a thermal isolation structure of the reverse-mesa waveguide is introduced. In this device, the temperature of the waveguide core increases steeply at low tuning power levels, resulting in highly efficient wavelength tuning properties. On the other hand, at high tuning power, the DBR reflection spectrum broadens and the side-mode suppression ratio (SMSR) performances degrades. These effects are found to be caused mainly by non-uniform temperature distribution along the longitudinal direction.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 5","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11079983/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To evaluate the effect of thermally isolated waveguide structure in a heater-based tunable distributed Bragg reflector (DBR) laser, the temperature distribution and thermo-optical characteristics are investigated at various heater powers. The reflection spectrum of the DBR is designed, and the tuning characteristics of the fabricated DBR laser are compared with simulation results. It is found that the waveguide temperature increases linearly with the heater power, whereas the effective refractive index increases nonlinearly, resulting in the corresponding nonlinear wavelength-tuning characteristics. In order to obtain efficient thermal tuning characteristics, a thermal isolation structure of the reverse-mesa waveguide is introduced. In this device, the temperature of the waveguide core increases steeply at low tuning power levels, resulting in highly efficient wavelength tuning properties. On the other hand, at high tuning power, the DBR reflection spectrum broadens and the side-mode suppression ratio (SMSR) performances degrades. These effects are found to be caused mainly by non-uniform temperature distribution along the longitudinal direction.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.