Tianwen Xia;Le Wang;Enguo Chen;Zhonghang Huang;Chunli Yan;Dalei Wu;Q. Frank Yan;Jie Sun
{"title":"Comparison of GaN LED Optical Simulation in 2D and 3D Space Based on k-Domain Analysis Method","authors":"Tianwen Xia;Le Wang;Enguo Chen;Zhonghang Huang;Chunli Yan;Dalei Wu;Q. Frank Yan;Jie Sun","doi":"10.1109/JQE.2024.3389043","DOIUrl":"10.1109/JQE.2024.3389043","url":null,"abstract":"Earlier researchers have designed nanostructures such as stripe gratings (SG) or photonic crystals array (PhCA) to improve the light extraction efficiency (LEE) of light-emitting diodes (LEDs) by the diffraction mechanism. However, through k-domain method and simulation analysis, this letter finds that although SG perform well in 2D simulation, their effect drops sharply in 3D space, a phenomenon being overlooked in the community. This letter explains the diffraction mechanism of LEDs with nanostructure in 2D and 3D space through K-domain analysis, and reveals the inaccuracy of simulating LED with SG in 2D space. Unlike SG, PhCA offers diffraction in two directions and may be more suitable for LEDs.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-6"},"PeriodicalIF":2.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng Zheng;Ward A. P. M. Hendriks;S. M. García-Blanco;Lantian Chang
{"title":"Parallel Sensing With Multiple Microrings on a Single Bus Waveguide","authors":"Zheng Zheng;Ward A. P. M. Hendriks;S. M. García-Blanco;Lantian Chang","doi":"10.1109/JQE.2024.3386101","DOIUrl":"10.1109/JQE.2024.3386101","url":null,"abstract":"We present a multiple microrings channel integrated chip and develop a signal processing method that enables parallel sensing with this chip. We utilize fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) to extract signals from different rings with different free spectra ranges (FSR). We verify this algorithm with temperature and solution sensing experiments. Compared with the conventional single-ring-single-resonance method, it shows improvements in up to 8 multi-channels capability and higher time resolution with the same experimental hardware.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-5"},"PeriodicalIF":2.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3399866","DOIUrl":"https://doi.org/10.1109/JQE.2024.3399866","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3379795","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379795","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectrally Pure W-Band RF Carrier Generation With Packaged Silicon Photonics Circuit","authors":"Claudio Porzi;Marco Chiesa;Alessandra Bigongiari;Aina Serrano Rodrigo;Marc Sorel;Davide Rotta;Luca Roselli;Antonio D’Errico;Antonella Bogoni;Antonio Malacarne","doi":"10.1109/JQE.2024.3380552","DOIUrl":"10.1109/JQE.2024.3380552","url":null,"abstract":"A packaged silicon photonics radio-frequency (RF) synthesizer operating in the millimeter (mm-) wave band suitable for clock signal distribution in b5G/6G radio access networks is realized and experimentally characterized. The assembly include a photonic integrated circuit (PIC) acting as a frequency multiplier for a local oscillator (LO) reference at microwave frequencies and a printed circuit board (PCB) hosting a custom bias tee designed to provide a wideband matching condition over more than 6 GHz around 20GHz for the input LO signal and supporting high power levels for efficient frequency multiplication operation. Measurements performed on a 100GHz generated RF signal via five-fold multiplication of a LO wave at 20 GHz indicate a low phase noise level of -97dBc/Hz at an offset of 10kHz from the carrier with a limited excess timing jitter of less than 2fs with respect to the LO signal, making the circuit operating nearly as an ideal frequency multiplier.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1 × 4 Integrated Microlenses High-Rate Photodetector Array for Optical Communication Transmission","authors":"Xiaowei Yang;Weifang Yuan;Xiaofeng Duan;Xianjie Li;Kai Liu;Yongqing Huang","doi":"10.1109/JQE.2024.3374126","DOIUrl":"10.1109/JQE.2024.3374126","url":null,"abstract":"Toward the application of 400 G optical receiver chips in optical communication systems, this paper presents a \u0000<inline-formula> <tex-math>$1times 4$ </tex-math></inline-formula>\u0000 photodetector (PD) array with a monolithic integrated InP microlenses structure. The absorption layer of the PD array in question includes the non-depleted, partially depleted, and depleted regions. This third-order composite absorber layer accelerates the diffusion of electrons in the absorber layer and balances the transport times of holes and electrons. Therefore, the high-speed and high responsivity characteristics of the device can be realized. The integration of InP microlenses on the backside of the PD allows the effective photosensitive surface area to be increased and the incident light alignment deviation to be compensated. Tests yielded a 3-dB bandwidth of the PD array at 1310 nm greater than 40 GHz, with a peak responsivity of 0.64 A/W. The responsivity of two types of PDs was measured when incident at a distance of \u0000<inline-formula> <tex-math>$10~mu text{m}$ </tex-math></inline-formula>\u0000 away from the main optical axis. The responsivity of the integrated microlenses decreased to 67.05% of the maximum value. Compared to the device without integrated microlenses, the responsivity increased by 66.76%.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-8"},"PeriodicalIF":2.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton
{"title":"Photovoltaic Modulating Retroreflectors for Low Power Consumption Free Space Optical Communication Systems","authors":"Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton","doi":"10.1109/JQE.2024.3374101","DOIUrl":"10.1109/JQE.2024.3374101","url":null,"abstract":"An InGaAs-InAsP-GaInP asymmetric stepped quantum well structure is proposed for unbiased detection and subsequent modulation of an incident continuous wave optical signal for application in compact, retroreflective, free-space optical communication platforms. Such operation drastically reduces onboard power consumption in large-area, pixelated arrays by driving only optically activated pixels. A modelling routine involving calculations of band structure, fraction of light absorbed, and responsivity have been used to analyse structures exhibiting an asymmetric quantum confined Stark effect. The proposed structure, compared with devices following similar modeling approaches, is predicted to exhibit an unbiased responsivity of 0.004 A/W enabling single pixel detection prior to triggering modulation. The calculated photocurrent of \u0000<inline-formula> <tex-math>$4~mu $ </tex-math></inline-formula>\u0000 A offers adequate signal to noise against dark current when operated in a photovoltaic mode. Furthermore, the strong blueshift in the ground state transition energy calculated for the applied field results in extinction ratios in excess of 4dB for the modulated signal. These findings suggest performance enhancements at a fraction of current onboard power consumption in modulating retroreflectors for compact, free-space optical communication platforms.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}