IEEE Journal of Quantum Electronics最新文献

筛选
英文 中文
Comparison of GaN LED Optical Simulation in 2D and 3D Space Based on k-Domain Analysis Method 基于 k 域分析方法的氮化镓发光二极管二维和三维空间光学模拟比较
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-04-15 DOI: 10.1109/JQE.2024.3389043
Tianwen Xia;Le Wang;Enguo Chen;Zhonghang Huang;Chunli Yan;Dalei Wu;Q. Frank Yan;Jie Sun
{"title":"Comparison of GaN LED Optical Simulation in 2D and 3D Space Based on k-Domain Analysis Method","authors":"Tianwen Xia;Le Wang;Enguo Chen;Zhonghang Huang;Chunli Yan;Dalei Wu;Q. Frank Yan;Jie Sun","doi":"10.1109/JQE.2024.3389043","DOIUrl":"10.1109/JQE.2024.3389043","url":null,"abstract":"Earlier researchers have designed nanostructures such as stripe gratings (SG) or photonic crystals array (PhCA) to improve the light extraction efficiency (LEE) of light-emitting diodes (LEDs) by the diffraction mechanism. However, through k-domain method and simulation analysis, this letter finds that although SG perform well in 2D simulation, their effect drops sharply in 3D space, a phenomenon being overlooked in the community. This letter explains the diffraction mechanism of LEDs with nanostructure in 2D and 3D space through K-domain analysis, and reveals the inaccuracy of simulating LED with SG in 2D space. Unlike SG, PhCA offers diffraction in two directions and may be more suitable for LEDs.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-6"},"PeriodicalIF":2.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel Sensing With Multiple Microrings on a Single Bus Waveguide 在单总线波导上使用多个微镜进行并行传感
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-04-08 DOI: 10.1109/JQE.2024.3386101
Zheng Zheng;Ward A. P. M. Hendriks;S. M. García-Blanco;Lantian Chang
{"title":"Parallel Sensing With Multiple Microrings on a Single Bus Waveguide","authors":"Zheng Zheng;Ward A. P. M. Hendriks;S. M. García-Blanco;Lantian Chang","doi":"10.1109/JQE.2024.3386101","DOIUrl":"10.1109/JQE.2024.3386101","url":null,"abstract":"We present a multiple microrings channel integrated chip and develop a signal processing method that enables parallel sensing with this chip. We utilize fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) to extract signals from different rings with different free spectra ranges (FSR). We verify this algorithm with temperature and solution sensing experiments. Compared with the conventional single-ring-single-resonance method, it shows improvements in up to 8 multi-channels capability and higher time resolution with the same experimental hardware.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-5"},"PeriodicalIF":2.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-29 DOI: 10.1109/JQE.2024.3399866
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3399866","DOIUrl":"https://doi.org/10.1109/JQE.2024.3399866","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-29 DOI: 10.1109/JQE.2024.3399890
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3399890","DOIUrl":"https://doi.org/10.1109/JQE.2024.3399890","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10541324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics publication information IEEE 量子电子学报》出版信息
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379791
{"title":"IEEE Journal of Quantum Electronics publication information","authors":"","doi":"10.1109/JQE.2024.3379791","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379791","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480293","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blank Page 空白页
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379797
{"title":"Blank Page","authors":"","doi":"10.1109/JQE.2024.3379797","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379797","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"C4-C4"},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Quantum Electronics information for authors IEEE 期刊《量子电子学》为作者提供的信息
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-26 DOI: 10.1109/JQE.2024.3379795
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3379795","DOIUrl":"https://doi.org/10.1109/JQE.2024.3379795","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480291","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140309980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrally Pure W-Band RF Carrier Generation With Packaged Silicon Photonics Circuit 利用封装硅光子电路生成光谱纯净的 W 波段射频载波
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-21 DOI: 10.1109/JQE.2024.3380552
Claudio Porzi;Marco Chiesa;Alessandra Bigongiari;Aina Serrano Rodrigo;Marc Sorel;Davide Rotta;Luca Roselli;Antonio D’Errico;Antonella Bogoni;Antonio Malacarne
{"title":"Spectrally Pure W-Band RF Carrier Generation With Packaged Silicon Photonics Circuit","authors":"Claudio Porzi;Marco Chiesa;Alessandra Bigongiari;Aina Serrano Rodrigo;Marc Sorel;Davide Rotta;Luca Roselli;Antonio D’Errico;Antonella Bogoni;Antonio Malacarne","doi":"10.1109/JQE.2024.3380552","DOIUrl":"10.1109/JQE.2024.3380552","url":null,"abstract":"A packaged silicon photonics radio-frequency (RF) synthesizer operating in the millimeter (mm-) wave band suitable for clock signal distribution in b5G/6G radio access networks is realized and experimentally characterized. The assembly include a photonic integrated circuit (PIC) acting as a frequency multiplier for a local oscillator (LO) reference at microwave frequencies and a printed circuit board (PCB) hosting a custom bias tee designed to provide a wideband matching condition over more than 6 GHz around 20GHz for the input LO signal and supporting high power levels for efficient frequency multiplication operation. Measurements performed on a 100GHz generated RF signal via five-fold multiplication of a LO wave at 20 GHz indicate a low phase noise level of -97dBc/Hz at an offset of 10kHz from the carrier with a limited excess timing jitter of less than 2fs with respect to the LO signal, making the circuit operating nearly as an ideal frequency multiplier.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 6","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140200379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1 × 4 Integrated Microlenses High-Rate Photodetector Array for Optical Communication Transmission 用于光通信传输的 1×4 集成微透镜高速率光电探测器阵列
IF 2.5 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-08 DOI: 10.1109/JQE.2024.3374126
Xiaowei Yang;Weifang Yuan;Xiaofeng Duan;Xianjie Li;Kai Liu;Yongqing Huang
{"title":"1 × 4 Integrated Microlenses High-Rate Photodetector Array for Optical Communication Transmission","authors":"Xiaowei Yang;Weifang Yuan;Xiaofeng Duan;Xianjie Li;Kai Liu;Yongqing Huang","doi":"10.1109/JQE.2024.3374126","DOIUrl":"10.1109/JQE.2024.3374126","url":null,"abstract":"Toward the application of 400 G optical receiver chips in optical communication systems, this paper presents a \u0000<inline-formula> <tex-math>$1times 4$ </tex-math></inline-formula>\u0000 photodetector (PD) array with a monolithic integrated InP microlenses structure. The absorption layer of the PD array in question includes the non-depleted, partially depleted, and depleted regions. This third-order composite absorber layer accelerates the diffusion of electrons in the absorber layer and balances the transport times of holes and electrons. Therefore, the high-speed and high responsivity characteristics of the device can be realized. The integration of InP microlenses on the backside of the PD allows the effective photosensitive surface area to be increased and the incident light alignment deviation to be compensated. Tests yielded a 3-dB bandwidth of the PD array at 1310 nm greater than 40 GHz, with a peak responsivity of 0.64 A/W. The responsivity of two types of PDs was measured when incident at a distance of \u0000<inline-formula> <tex-math>$10~mu text{m}$ </tex-math></inline-formula>\u0000 away from the main optical axis. The responsivity of the integrated microlenses decreased to 67.05% of the maximum value. Compared to the device without integrated microlenses, the responsivity increased by 66.76%.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-8"},"PeriodicalIF":2.5,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photovoltaic Modulating Retroreflectors for Low Power Consumption Free Space Optical Communication Systems 用于低功耗自由空间光通信系统的光电调制逆反射器
IF 2.2 3区 工程技术
IEEE Journal of Quantum Electronics Pub Date : 2024-03-07 DOI: 10.1109/JQE.2024.3374101
Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton
{"title":"Photovoltaic Modulating Retroreflectors for Low Power Consumption Free Space Optical Communication Systems","authors":"Benjamin C. Maglio;Crisanto Quintana;Yoann Thueux;Peter M. Smowton","doi":"10.1109/JQE.2024.3374101","DOIUrl":"10.1109/JQE.2024.3374101","url":null,"abstract":"An InGaAs-InAsP-GaInP asymmetric stepped quantum well structure is proposed for unbiased detection and subsequent modulation of an incident continuous wave optical signal for application in compact, retroreflective, free-space optical communication platforms. Such operation drastically reduces onboard power consumption in large-area, pixelated arrays by driving only optically activated pixels. A modelling routine involving calculations of band structure, fraction of light absorbed, and responsivity have been used to analyse structures exhibiting an asymmetric quantum confined Stark effect. The proposed structure, compared with devices following similar modeling approaches, is predicted to exhibit an unbiased responsivity of 0.004 A/W enabling single pixel detection prior to triggering modulation. The calculated photocurrent of \u0000<inline-formula> <tex-math>$4~mu $ </tex-math></inline-formula>\u0000 A offers adequate signal to noise against dark current when operated in a photovoltaic mode. Furthermore, the strong blueshift in the ground state transition energy calculated for the applied field results in extinction ratios in excess of 4dB for the modulated signal. These findings suggest performance enhancements at a fraction of current onboard power consumption in modulating retroreflectors for compact, free-space optical communication platforms.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 5","pages":"1-9"},"PeriodicalIF":2.2,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信