{"title":"High Temperature Mid-Wave Infrared InAsSb Barrier Photodetectors","authors":"Ting Xue;Jianliang Huang;Yanhua Zhang;Wenquan Ma","doi":"10.1109/JQE.2024.3365649","DOIUrl":"10.1109/JQE.2024.3365649","url":null,"abstract":"We report on mid-wave infrared InAsSb photodetectors with high-barrier materials implemented in the depletion region. The devices exhibit promising performance at high temperature. At 160 K, the 50% cutoff wavelength is \u0000<inline-formula> <tex-math>$4.18~mu text{m}$ </tex-math></inline-formula>\u0000, and the shot noise limited detectivity \u0000<inline-formula> <tex-math>$D^{star} $ </tex-math></inline-formula>\u0000 is \u0000<inline-formula> <tex-math>$1.57times 10 ^{12}$ </tex-math></inline-formula>\u0000 cm\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000Hz\u0000<inline-formula> <tex-math>$^{1/2}$ </tex-math></inline-formula>\u0000/W for the peak wavelength of \u0000<inline-formula> <tex-math>$3.79~mu text{m}$ </tex-math></inline-formula>\u0000. At 300 K, the 50% cutoff wavelength is \u0000<inline-formula> <tex-math>$4.70~mu text{m}$ </tex-math></inline-formula>\u0000, and the \u0000<inline-formula> <tex-math>$D^{star} $ </tex-math></inline-formula>\u0000 is \u0000<inline-formula> <tex-math>$4.87times 10 ^{9}$ </tex-math></inline-formula>\u0000 cm\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000Hz\u0000<inline-formula> <tex-math>$^{1/2}$ </tex-math></inline-formula>\u0000/W for the peak response wavelength of \u0000<inline-formula> <tex-math>$4.15~mu text{m}$ </tex-math></inline-formula>\u0000. The dark current of the device is found to be dominated by the diffusion current rather than the generation-recombination current for the temperature range of 160–300 K. We also determine the Varshni parameters of the InAsSb material with varying strain, and the bandgap bowing parameters.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-4"},"PeriodicalIF":2.5,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linda J. Olafsen;Kyler A. Stephens;Daniella R. DeVries
{"title":"Corrections to “Optical Pumping and Electrical Injection of a 3.6 μm Interband Cascade Laser”","authors":"Linda J. Olafsen;Kyler A. Stephens;Daniella R. DeVries","doi":"10.1109/JQE.2024.3364628","DOIUrl":"https://doi.org/10.1109/JQE.2024.3364628","url":null,"abstract":"In the above article \u0000<xref>[1]</xref>\u0000, \u0000<xref>Fig. 7(b)</xref>\u0000 duplicates Fig. 6(b). The correct \u0000<xref>Fig. 7(b)</xref>\u0000 is shown as follows.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-1"},"PeriodicalIF":2.5,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical Coupling Effect on Gain Bandwidth of Chirped InAs/InP Quantum Dot Structures","authors":"Gaowen Chen;Fujuan Huang;Xiupu Zhang","doi":"10.1109/JQE.2024.3357031","DOIUrl":"https://doi.org/10.1109/JQE.2024.3357031","url":null,"abstract":"Quantum dot (QD) devices are usually desired to have a broadband gain spectrum. An alternative solution to achieve a broadband gain in QD devices is to use multiple layers with different QD heights, which are stacked vertically, i.e. a chirped QD structure in the active region. In the chirped stacked QD structure, the vertical strain and electron coupling effect have a significant impact on the optical transition property and thus optical gain bandwidth. However, previous studies on the vertical coupling effect have mainly focused on uniformly stacked QD structures, and the chirped QD structures have not been investigated carefully. This work presents a detailed analysis of the vertical coupling effect in chirped QD structures (i.e. ascending and descending chirped structure) and its impact on the optical gain bandwidth of the active region. It is found that the descending chirped structure leads to a wider gain bandwidth, in particular at high current injection. A Fabry-Perot mode-locked laser with the descending chirped structure presents a better performance in pulse width and frequency comb lines compared to the ascending chirped structure.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-9"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hysteresis Behavior of External Cavity Quantum Cascade Lasers in the Strong Feedback Regime","authors":"Jonas Schundelmeier;Quankui Yang;Stefan Hugger","doi":"10.1109/JQE.2024.3362272","DOIUrl":"10.1109/JQE.2024.3362272","url":null,"abstract":"We experimentally investigate mode hops of a continuous-wave (cw) external cavity (EC) quantum cascade laser (QCL) in Littrow configuration, observing hysteresis for variations of either external cavity length, chip current, or grating angle. The results are compared with two different theoretical models. Simulation results suggest that hysteresis in EC-QCLs is caused by self-stabilization due to mode coupling.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-10"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vertical-Cavity Surface-Emitting Laser Linewidth Narrowing Enabled by Internal-Cavity Engineering","authors":"Zhiting Tang;Chuanlin Li;Feiyun Zhao;Jilin Liu;Aobo Ren;Hongxing Xu;Jiang Wu","doi":"10.1109/JQE.2024.3362276","DOIUrl":"10.1109/JQE.2024.3362276","url":null,"abstract":"Vertical-cavity surface-emitting lasers (VCSELs), featuring the advantages of low energy consumption, miniaturization, and high-beam quality, show potential for various applications from atomic clock to light detection and ranging (LiDAR). A high-performance atomic clock system requires laser linewidths below 10 MHz to ensure compatibility with the natural atomic linewidth (e.g., 5 MHz for cesium). However, the current prevalent method for reducing VCSEL linewidths relies on external cavities, which adds complexity and cost to the devices and hampers seamless integration into atomic clock systems. While narrow-linewidth VCSELs have been successfully demonstrated using extended cavities, there remains a need for a comprehensive and systematic study on the underlying design principles and optimization strategies. Here, we propose a VCSEL linewidth narrowing strategy enabled by internal-cavity engineering for cesium atomic clock applications. We investigate strategies to narrow the cold cavity linewidth without introducing additional optical round-trip loss. We provide a general approach to constructing the extended cavity (EC) and showcase the ability of manipulating the phase of light. To optimize the electrical properties, we explore variations in the extended layer thickness based on a monolithic VCSEL structure. We proposed an EC-VCSEL configuration with a theoretical laser spectral linewidth of approximately 1.7 MHz and a calculated output power of about 3 mW. Through exploiting gain-cavity offset, the EC-VCSEL exhibits a stable emission (894.6 nm) and a high gain of cavity mode (\u0000<inline-formula> <tex-math>$sim $ </tex-math></inline-formula>\u00004000 cm\u0000<inline-formula> <tex-math>$^{-1}$ </tex-math></inline-formula>\u0000) at high-temperature (e.g., 360 K). This work may serve as a reference for the realization of narrow-linewidth VCSELs, offering potential benefits in reducing device complexity and facilitating the system integration.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-8"},"PeriodicalIF":2.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3355915","DOIUrl":"https://doi.org/10.1109/JQE.2024.3355915","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan
{"title":"Long-Wave Infrared ZnGeP2 Optical Parametric Oscillator With a Wide Tuning Range by Rotating a Diffraction Grating","authors":"Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan","doi":"10.1109/JQE.2024.3356367","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356367","url":null,"abstract":"We report a ZnGeP\u0000<inline-formula> <tex-math>$_{mathbf {2}}$ </tex-math></inline-formula>\u0000 optical parametric oscillator (OPO) with a wide tuning range in the long-wave infrared. The OPO was pumped by a Ho: YLF laser with high peak power, and a resonate cavity with a diffraction grating was used. A tunable long-wave laser with the wavelength of 8.45-\u0000<inline-formula> <tex-math>$11.37~mu text{m}$ </tex-math></inline-formula>\u0000 was achieved by rotating the grating. Meanwhile, the linewidth was less than 61 nm at the wavelength within the tunable range from \u0000<inline-formula> <tex-math>$8.45~mu text{m}$ </tex-math></inline-formula>\u0000 to \u0000<inline-formula> <tex-math>$9.15~mu text{m}$ </tex-math></inline-formula>\u0000. When the wavelength of the idler light was \u0000<inline-formula> <tex-math>$8.84~mu text{m}$ </tex-math></inline-formula>\u0000, the maximum output energy was \u0000<inline-formula> <tex-math>$52.80~mu text{J}$ </tex-math></inline-formula>\u0000, and the peak power was 6.60 kW. The novel tuning method offers an effective way to realize a tunable long-wave source for stand-off gas concentration detection.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot
{"title":"New SOA Design With Large Gain, Small Noise Figure, and High Saturation Output Power Level","authors":"Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot","doi":"10.1109/JQE.2024.3356366","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356366","url":null,"abstract":"We introduce a semiconductor optical amplifier (SOA) chip with high gain (>40 dB) and high saturation power (>21 dBm) with moderate drive current (1.3A). A design model for optimizing the new dual-section SOA concept is presented. The model predictions are in very good agreement with the measurement results on fabricated chips. Using the gain and saturation output power product as the figure of merit, it shows the best-reported trade-off result so far. However, due to the slight degradation of the noise figure that ensued, an advanced design is introduced, enabling the optimization of the noise figure in addition to the gain and saturation output power.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}