{"title":"IEEE Journal of Quantum Electronics information for authors","authors":"","doi":"10.1109/JQE.2024.3355915","DOIUrl":"https://doi.org/10.1109/JQE.2024.3355915","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"C3-C3"},"PeriodicalIF":2.5,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10415624","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139654802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan
{"title":"Long-Wave Infrared ZnGeP2 Optical Parametric Oscillator With a Wide Tuning Range by Rotating a Diffraction Grating","authors":"Hai Wang;Zhiyong Li;Juntao Tian;Lili Zhao;Rongqing Tan","doi":"10.1109/JQE.2024.3356367","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356367","url":null,"abstract":"We report a ZnGeP\u0000<inline-formula> <tex-math>$_{mathbf {2}}$ </tex-math></inline-formula>\u0000 optical parametric oscillator (OPO) with a wide tuning range in the long-wave infrared. The OPO was pumped by a Ho: YLF laser with high peak power, and a resonate cavity with a diffraction grating was used. A tunable long-wave laser with the wavelength of 8.45-\u0000<inline-formula> <tex-math>$11.37~mu text{m}$ </tex-math></inline-formula>\u0000 was achieved by rotating the grating. Meanwhile, the linewidth was less than 61 nm at the wavelength within the tunable range from \u0000<inline-formula> <tex-math>$8.45~mu text{m}$ </tex-math></inline-formula>\u0000 to \u0000<inline-formula> <tex-math>$9.15~mu text{m}$ </tex-math></inline-formula>\u0000. When the wavelength of the idler light was \u0000<inline-formula> <tex-math>$8.84~mu text{m}$ </tex-math></inline-formula>\u0000, the maximum output energy was \u0000<inline-formula> <tex-math>$52.80~mu text{J}$ </tex-math></inline-formula>\u0000, and the peak power was 6.60 kW. The novel tuning method offers an effective way to realize a tunable long-wave source for stand-off gas concentration detection.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139744699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot
{"title":"New SOA Design With Large Gain, Small Noise Figure, and High Saturation Output Power Level","authors":"Shuqi Yu;Antonin Gallet;Iosif Demirtzioglou;Sheherazade Lamkadmi Azouigui;Nayla El Dahdah;Romain Brenot","doi":"10.1109/JQE.2024.3356366","DOIUrl":"https://doi.org/10.1109/JQE.2024.3356366","url":null,"abstract":"We introduce a semiconductor optical amplifier (SOA) chip with high gain (>40 dB) and high saturation power (>21 dBm) with moderate drive current (1.3A). A design model for optimizing the new dual-section SOA concept is presented. The model predictions are in very good agreement with the measurement results on fabricated chips. Using the gain and saturation output power product as the figure of merit, it shows the best-reported trade-off result so far. However, due to the slight degradation of the noise figure that ensued, an advanced design is introduced, enabling the optimization of the noise figure in addition to the gain and saturation output power.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Xiao;Jian Cui;Xusheng Xiao;Yantao Xu;Haitao Guo
{"title":"Modeling of 1.7-μm and 2.4-μm Dual-Wavelength Pumped 4.3-μm Dysprosium-Doped Chalcogenide Fiber Lasers","authors":"Yang Xiao;Jian Cui;Xusheng Xiao;Yantao Xu;Haitao Guo","doi":"10.1109/JQE.2024.3350688","DOIUrl":"10.1109/JQE.2024.3350688","url":null,"abstract":"A novel \u0000<inline-formula> <tex-math>$1.7 mu text{m}$ </tex-math></inline-formula>\u0000 and \u0000<inline-formula> <tex-math>$2.4 mu text{m}$ </tex-math></inline-formula>\u0000 dual-wavelength pumping scheme for a \u0000<inline-formula> <tex-math>$4.3 mu text{m}$ </tex-math></inline-formula>\u0000 dysprosium (Dy3+)-doped chalcogenide fiber laser was theoretically demonstrated. It was attributed to the \u0000<inline-formula> <tex-math>$2.4 mu text{m}$ </tex-math></inline-formula>\u0000 excited stated absorption (ESA, \u0000<inline-formula> <tex-math>$^{6}text{H}_{mathrm {13/2}} to ^{6}text{H}_{mathrm {9/2}},^{6}text{F}_{mathrm {11/2}}$ </tex-math></inline-formula>\u0000 transition). Theoretically, when the two pumps were 5 W and 2 W, respectively, a laser power of 1.5 W with an remarkable efficiency of 30.2% was obtained from the home-made Dy3+:Ga0.8As34.2Sb5S60 glass fiber with a loss coefficient of 3 dB/m and a Dy3+ concentration of \u0000<inline-formula> <tex-math>$3.67times 10^{25}$ </tex-math></inline-formula>\u0000 ions/m3. Results indicated that the dual-wavelength pumping scheme based on the gain fiber provides a potential way to \u0000<inline-formula> <tex-math>$4.3 mu text{m}$ </tex-math></inline-formula>\u0000 dysprosium-doped chalcogenide fiber lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-6"},"PeriodicalIF":2.5,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electro-Optical Feedback for (Nearly) All-Optical Detection","authors":"Tamir Weinstock;Ofer Amrani","doi":"10.1109/JQE.2023.3348113","DOIUrl":"10.1109/JQE.2023.3348113","url":null,"abstract":"Electro-optical feedback circuit is presented and analyzed. The method realizes a closed-loop positive feedback by feeding the electrodes of a Mach-Zehnder interferometer with the voltage produced by its own detection circuit. In its basic form, it is shown to act as a multi-level opto-electric quantizer. The quantization behavior disclosed herein is realized via the opto-electric conversion process itself. The circuit is modeled by an equivalent electronic representation with which the static and dynamic behavior of the circuit is characterized. A component-level electro-optical simulation is included, supporting the theoretical results.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 2","pages":"1-8"},"PeriodicalIF":2.5,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Balanced Detector for Coherent Receiver on Generic InP Platform by Particle Swarm Optimization","authors":"Dhiman Nag;Weiming Yao;Jos J. G. M. van der Tol","doi":"10.1109/JQE.2024.3349516","DOIUrl":"10.1109/JQE.2024.3349516","url":null,"abstract":"The balanced photodetector (BPD) is an important component for high-speed coherent receiver. An optimization strategy of waveguide-based multi-quantum well (MQW) BPDs, operating at 1550 nm is demonstrated on a generic InP platform. Design parameters of BPD are optimized towards achieving the highest bandwidth for a responsivity through an algorithm based on Particle Swarm Optimization (PSO). We do so by establishing an equivalent circuit model of BPD and analyzing its opto-electronic transfer function through numerical modelling. We address the major bottlenecks of high-speed BPDs: transit time of generated carriers and RC loading in our model. The algorithm is able to provide multiple combinations of design parameters with the same output characteristics. The design methodology to integrate laser with optimized BPD is presented to successfully implement a coherent receiver.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 3","pages":"1-12"},"PeriodicalIF":2.5,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139946259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John A. Carlson;Fu-Chen Hsiao;Andrey Mironov;P. Scott Carney;John M. Dallesasse
{"title":"Photo-Enhanced Room Temperature Magnetism and Two-Photon Effects in Manganese-Implanted Gallium Nitride p-i-n Structures","authors":"John A. Carlson;Fu-Chen Hsiao;Andrey Mironov;P. Scott Carney;John M. Dallesasse","doi":"10.1109/JQE.2023.3348112","DOIUrl":"https://doi.org/10.1109/JQE.2023.3348112","url":null,"abstract":"The insertion of manganese into GaN-based p-i-n epitaxial structures allows for a ferromagnetic phase to occur at room temperature that can be photo-enhanced and retained for >8 hours. GaN p-i-n LED structures are implanted with manganese to form a ferromagnetic phase and illuminated with resonant photons across the GaN bandgap. The magnetization after illumination is found to increase by \u0000<inline-formula> <tex-math>$0.2~mu _{B}$ </tex-math></inline-formula>\u0000/Mn atom. Subsequent illumination below the GaN:Mn bandgap is found to remove the photo-enhancement of magnetism and fully demagnetize the material. The optically-driven process confirms that photon absorption drives hole-media induced ferromagnetic changes to the top layer in GaN:Mn structures. A modified p-i-n structure is designed that situates a two-dimensional hole gas (2DHG) beneath the magnetic layer for improvement of the hole injection effect. The mid-gap state formed by the implanted manganese in GaN:Mn is simulated for two-photon electromagnetic induced transparency that can control the absorption of the top layer and moderate the hole injection. The design of GaN:Mn p-i-n structures is explored for spin-photon mapping of states for long-term storage in memory systems.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 1","pages":"1-12"},"PeriodicalIF":2.5,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139399819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2023 Index IEEE Journal of Quantum Electronics Vol.59","authors":"","doi":"10.1109/JQE.2023.3345875","DOIUrl":"10.1109/JQE.2023.3345875","url":null,"abstract":"","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"59 6","pages":"1-21"},"PeriodicalIF":2.5,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10372134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139014895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}