J. Andrews, S. Teare, S. Restaino, T. Martinez, C. Wilcox, D. Wick, W. Cowan, O. Spahn, B. Bagwell
{"title":"Performance of a MEMS reflective wavefront sensor","authors":"J. Andrews, S. Teare, S. Restaino, T. Martinez, C. Wilcox, D. Wick, W. Cowan, O. Spahn, B. Bagwell","doi":"10.1117/12.763866","DOIUrl":"https://doi.org/10.1117/12.763866","url":null,"abstract":"An all reflective Shack Hartmann style wavefront sensor has been developed using a Sandia National Laboratory segmented Micro-Electro-Mechanical (MEM) deformable mirror. This wavefront sensor is presently being explored for use with adaptive optics systems at the Naval Prototype Optical Interferometer and other experimental adaptive systems within the Naval Research Laboratory. The 61 MEM mirror segments are constructed in a hexagonal array and each segment can be constructed with either flat or optically powered surfaces. The later allows each mirror segment to bring its subaperture of light to a focus on an imaging array, creating an array of spots similar to a Shack Hartmann. Each mirror segment has tip, tilt and piston functionality to control the position of the focused spot such that measurement of the applied voltage can be used to drive a deformable mirror. As the system is reflective and each segment is controllable, this wavefront sensor avoids the light loss associated with refractive optics and has larger dynamic range than traditional Shack Hartmann wavefront sensors. This wavefront sensor can detect large magnitude aberrations up to and beyond where the focused spots overlap, due to the ability to dither each focused spot. Previous publications reported on this novel new technique and the electrical specifications, while this paper reports on experiments and analysis of the open-loop performance, including repeatability and linearity measurements. The suitability of using the MEM deformable mirror as a high dynamic range reflective wavefront sensor will be discussed and compared to current wavefront sensors and future work will be discussed.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127740411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
U. Klug, M. Boyle, F. Friederich, R. Kling, A. Ostendorf
{"title":"Laser beam shaping for micromaterial processing using a liquid crystal display","authors":"U. Klug, M. Boyle, F. Friederich, R. Kling, A. Ostendorf","doi":"10.1117/12.763542","DOIUrl":"https://doi.org/10.1117/12.763542","url":null,"abstract":"The high demand for beam shaping technology by the display industry has lead to higher resolutions, smaller pixel pitch and reduced costs. Nowadays high quality, nematic Liquid Crystal on Silicon microdisplays (LCoS) with resolutions of 1920 × 1080 pixels and 8 μm pixel pitch are available. The optical properties of these microdisplays allow for their application as an adaptive optical element where instantaneous change between arbitrary beam profiles is necessary. Laser material processing which often requires high beam qualities with various beam profiles is one industry where this technology could be applied. In this paper, a compact beam shaping setup and simple characterization methods for practical use of the LCoS at micromachining stations are presented.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131870753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Xie, C. Premachandran, M. Chew, Q. Yao, Diao Xu, D. Pinjala
{"title":"A novel approach on fluid dispensing for a DNA/RNA extraction chip package","authors":"Ling Xie, C. Premachandran, M. Chew, Q. Yao, Diao Xu, D. Pinjala","doi":"10.1117/12.763065","DOIUrl":"https://doi.org/10.1117/12.763065","url":null,"abstract":"Micro fluidic package with integrated reservoirs has been developed for DNA /RNA extraction application. A membrane based pump which consists of a reservoir to store reagents and a pin valve to control the fluid is developed to dispense the reagents into the chip. A programmable external actuator is fabricated to dispense the fluid from the membrane pump into the DNA chip. An elastic and high elongation thin rubber membrane is used to seal the membrane pump and at the same time prevent actuator from mixing with different reagents in the micro fluidic package. Break displacement during actuation of membrane pump sealing material is studied with different ratios of PDMS and other types of rubber materials. The fluid flow from the reservoir to the chip is controlled by a pin valve which is activated during the external actuation. A CFD simulation is performed to study the pumping action dusting the external actuation and is validated with experimental results.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124514748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulations of microflows induced by rotation of spirals in microchannels","authors":"M. Koz, S. Yeşilyurt","doi":"10.1117/12.762331","DOIUrl":"https://doi.org/10.1117/12.762331","url":null,"abstract":"In microflows where Reynolds number is much smaller than unity, screwing motion of spirals is an effective mechanism of actuation as proven by microorganisms which propel themselves with the rotation of their helical tails. The main focus of this study is to analyze the flow enabled by means of a rotating spiral inside a rectangular channel, and to identify effects of parameters that control the flow, namely, the frequency and amplitude of rotations and the axial span between the helical rounds, which is the wavelength. The time-dependent three-dimensional flow is modeled by Stokes equation subject to continuity in a time-dependent deforming domain due to the rotation of the spiral. Parametric results are compared with asymptotic results presented in literature to describe the flagellar motion of microorganisms.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124715864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chaotic passive micromixers with microstructures placed on the top and bottom floors of channel","authors":"J. Chen, Y. Lai, J. D. Lin","doi":"10.1117/12.761971","DOIUrl":"https://doi.org/10.1117/12.761971","url":null,"abstract":"The objective of this study is to present chaotic micromixers in which a series of microstructures are placed on the top and bottom floors of channels. Passive micromixers fabricated by MEMS technologies with crosswise grooves and ridges are considered. Numerical simulations using the commercial software CFD-ACE(U) are employed to predict the effects of various patterns of microstructures on mixing efficiency with the range of Reynolds number from 0.05 to 50. The influences of non-dimensional parameters such as the Reynolds number as well as the geometrical parameters on the mixing performance are presented in terms of the mixing index. Micromixers which are made of PDMS are used to investigate the mixing characteristics influenced by the different kinds of microstructures. A significant amount of stirring resulting from chaotic mixing can be seen due to the fluids flowing through the crosswise ridges embedded on the top and bottom floors of channels. While Re is greater than 1, the mixing index of the micromixer with crosswise ridges starts to increase as Re increases. This means that the flow field in this micromixer results in efficient chaotic mixing. Simulation results are presented to compare with the experimental data, and a very good agreement can be achieved. Finally, various numbers of the crosswise ridges with the same orientation in one cycle of the channels are investigated to present to the mixing performance in the microchannels. An optimal design can be found in our works.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"290 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123271726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metallo-dielectric nanophotonic materials via direct laser writing and electroless metallization","authors":"S. Kuebler, Yun-Sheng Chen, A. Tal","doi":"10.1117/12.760824","DOIUrl":"https://doi.org/10.1117/12.760824","url":null,"abstract":"Interest in three-dimensional (3D) metallo-dielectric photonic crystals (MDPCs) has grown considerably given their potential applications in optics and photonics. MDPCs can exhibit intriguing and potentially useful optical properties, including ultra-wide photonic bandgaps, engineered thermal emission, and negative refractive index. Yet experimental studies of such materials remain few because of the difficulties associated with fabricating 3D micron- and sub-micron-scale metallic structures. We report a route to MDPCs based on metallization of a 3D polymeric photonic crystal (PC) fabricated by multi-photon microfabrication (MPM). Polymeric PCs having face-centered tetragonal symmetry and micrometer-scale periodicity were created using a cross-linkable acrylate or epoxide pre-polymer. The resulting PCs were metallized by electroless deposition of silver or copper. Analysis of the metallized structures in cross-section by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy shows that silver deposited conformally onto the entire micro-porous lattice. The dielectric and metallized PCs were characterized by Fourier transform infrared (FTIR) spectroscopy. The polymer photonic crystals exhibit a stop band with strong reflectance near 4 to 6 microns, depending upon the lattice period. In contrast, FTIR spectra of the metallized PCs show widened stop bands of nearly 6 microns and greater and maximum reflectance exceeding 90%. The appreciable broadening of the stop band due to the presence of the deposited metal is a result consistent with previously reported theoretical and experimental data for all-metallic 3D PCs. Thus, the approach reported here appears suitable for fabricating 3D MDPCs of many symmetries and basis sets and provides a path for integrating such structures with other micron-scale optical elements.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"146 10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129754252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sandrine Thomas, J. W. Evans, D. Phillion, D. Gavel, D. Dillon, B. Macintosh
{"title":"Amplitude variations on the ExAO testbed: Part II","authors":"Sandrine Thomas, J. W. Evans, D. Phillion, D. Gavel, D. Dillon, B. Macintosh","doi":"10.1117/12.771766","DOIUrl":"https://doi.org/10.1117/12.771766","url":null,"abstract":"Micro-electrical-mechanical-systems (MEMS) deformable mirrors (DMs) are under study at the Laboratory for Adaptive Optics for inclusion in possible future adaptive optics systems, including open loop or extreme adaptive optics (ExAO) systems. MEMS DMs have several advantages in these areas because of low (to zero) hysterisis and high actuator counts. In this paper, we present work in the area of high-contrast adaptive optics systems, such as those needed to image extrasolar planets. These are known to require excellent wavefront control and diffraction suppression. On the ExAO testbed we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies, however, corresponding contrast measurements are limited by amplitude variations, including variations introduced by the MEMS. Results from experimental measurements and wave optic simulations on the ExAO testbed will be presented. In particular the effect of small scale MEMS structures on amplitude variations and ultimately high-contrast far field measurements will be examined. Experimental results include interferometer measurements of phase and amplitude using the phase shifting diffraction interferometer, direct imaging of the pupil, and far-field imaging.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128522050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Yu, Chengkuo Lee, L. Yan, Qing Xin Zhang, S. Yoon, J. Lau
{"title":"Development of wafer level packaged scanning micromirrors","authors":"A. Yu, Chengkuo Lee, L. Yan, Qing Xin Zhang, S. Yoon, J. Lau","doi":"10.1117/12.762021","DOIUrl":"https://doi.org/10.1117/12.762021","url":null,"abstract":"This paper presents design, simulation and fabrication of a wafer level packaged Microelectromechanical Systems (MEMS) scanning mirror. In particular we emphasize on the process development and materials characterization of In- Ag solder for a new wafer level hermetic/vacuum package using low temperature wafer bonding technology. The micromirror is actuated with an electrostatic comb actuator and operates in resonant torsional mode. The mirror plate size is 1.0 mm × 1.0 mm. The dynamic vibration characteristics have been analyzed by using FEM tools. With a single rectangular torsion bar, the scanning frequency is 20 KHz. Besides, the hermetically sealed packaged is favored by commercial applications. The wafer level package is successfully carried out at process temperature of 180°C. With proper process design, we may lead the form a single phase of Ag2In at the bonding interface, in which it is an intermetallic compound of high melting temperature. This new wafer level packaging approach allows us to have high temperature stability of wafer level packaged scanning mirror devices. The wafer level packaged devices are able to withstand the peak temperature in SMT (surface mount technology) manufacturing lines. It is a promising technology for commercializing MEMS devices.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124079897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Devaney, D. Coburn, C. Coleman, J. Dainty, E. Dalimier, T. Farrell, David Lara, David Mackey, R. Mackey
{"title":"Characterisation of MEMs mirrors for use in atmospheric and ocular wavefront correction","authors":"N. Devaney, D. Coburn, C. Coleman, J. Dainty, E. Dalimier, T. Farrell, David Lara, David Mackey, R. Mackey","doi":"10.1117/12.773641","DOIUrl":"https://doi.org/10.1117/12.773641","url":null,"abstract":"The Applied Optics group at the National University of Ireland, Galway, is engaged in research into various aspects of the application of adaptive optics to both ocular and atmospheric wavefront correction. A large number of commercially available deformable mirrors have been selected by the group for AO experiments, and these mirrors have been carefully characterised to determine their suitability for these tasks. In this paper we describe the approach we have used in characterising deformable mirrors and present results for several MEMs mirrors, including membrane mirrors from AgilOptics and Flexible Optical BV, a segmented micromirror from IrisAO and a 140-actuator mirror from Boston micromachines.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130514191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three dimensional waveguide fabrication in PMMA using femtosecond laser micromachining system","authors":"Nitin Uppal, P. Shiakolas, M. Rizwan","doi":"10.1117/12.763824","DOIUrl":"https://doi.org/10.1117/12.763824","url":null,"abstract":"Femtosecond lasers have been widely used for the micro structuring of transparent materials for a wide range of applications. The local change in refractive index by the irradiation of laser pulse has been exploited for optical applications ranging from optical data storage to the fabrication of waveguides and couplers. In this work, a Ti:Sapphire femtosecond laser (800nm, ~150 fs and 1 kHz) is used for the fabrication of three dimensional (3D) waveguides in thick PMMA substrates. The femtosecond laser microfabrication (FLM) system consists of the laser and three translational (X, Y and Z) stages and one rotational controlled motorized stages. The coordinated motion of these four stages can be used to generate desired three dimensional pattern inside the transparent material due to refractive index modification. This work will present the design of 3D waveguide using commercially available solid modeler, the generation of motion control codes using a customized post processor and the writing of the developed pattern. Also, control of the laser process parameters to obtain desired feature quality by minimizing self-focusing and self-trapping in PMMA is discussed. This FLM system along with the 4-axis machining capability can be effectively used for the fabrication of complex 3D waveguide circuits in a single step process.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130524450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}