混沌无源微混频器,其微结构放置在通道的顶部和底部

SPIE MOEMS-MEMS Pub Date : 2008-02-07 DOI:10.1117/12.761971
J. Chen, Y. Lai, J. D. Lin
{"title":"混沌无源微混频器,其微结构放置在通道的顶部和底部","authors":"J. Chen, Y. Lai, J. D. Lin","doi":"10.1117/12.761971","DOIUrl":null,"url":null,"abstract":"The objective of this study is to present chaotic micromixers in which a series of microstructures are placed on the top and bottom floors of channels. Passive micromixers fabricated by MEMS technologies with crosswise grooves and ridges are considered. Numerical simulations using the commercial software CFD-ACE(U) are employed to predict the effects of various patterns of microstructures on mixing efficiency with the range of Reynolds number from 0.05 to 50. The influences of non-dimensional parameters such as the Reynolds number as well as the geometrical parameters on the mixing performance are presented in terms of the mixing index. Micromixers which are made of PDMS are used to investigate the mixing characteristics influenced by the different kinds of microstructures. A significant amount of stirring resulting from chaotic mixing can be seen due to the fluids flowing through the crosswise ridges embedded on the top and bottom floors of channels. While Re is greater than 1, the mixing index of the micromixer with crosswise ridges starts to increase as Re increases. This means that the flow field in this micromixer results in efficient chaotic mixing. Simulation results are presented to compare with the experimental data, and a very good agreement can be achieved. Finally, various numbers of the crosswise ridges with the same orientation in one cycle of the channels are investigated to present to the mixing performance in the microchannels. An optimal design can be found in our works.","PeriodicalId":130723,"journal":{"name":"SPIE MOEMS-MEMS","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chaotic passive micromixers with microstructures placed on the top and bottom floors of channel\",\"authors\":\"J. Chen, Y. Lai, J. D. Lin\",\"doi\":\"10.1117/12.761971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to present chaotic micromixers in which a series of microstructures are placed on the top and bottom floors of channels. Passive micromixers fabricated by MEMS technologies with crosswise grooves and ridges are considered. Numerical simulations using the commercial software CFD-ACE(U) are employed to predict the effects of various patterns of microstructures on mixing efficiency with the range of Reynolds number from 0.05 to 50. The influences of non-dimensional parameters such as the Reynolds number as well as the geometrical parameters on the mixing performance are presented in terms of the mixing index. Micromixers which are made of PDMS are used to investigate the mixing characteristics influenced by the different kinds of microstructures. A significant amount of stirring resulting from chaotic mixing can be seen due to the fluids flowing through the crosswise ridges embedded on the top and bottom floors of channels. While Re is greater than 1, the mixing index of the micromixer with crosswise ridges starts to increase as Re increases. This means that the flow field in this micromixer results in efficient chaotic mixing. Simulation results are presented to compare with the experimental data, and a very good agreement can be achieved. Finally, various numbers of the crosswise ridges with the same orientation in one cycle of the channels are investigated to present to the mixing performance in the microchannels. An optimal design can be found in our works.\",\"PeriodicalId\":130723,\"journal\":{\"name\":\"SPIE MOEMS-MEMS\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE MOEMS-MEMS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.761971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE MOEMS-MEMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.761971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是提出混沌微混合器,其中一系列微观结构被放置在通道的顶部和底部地板上。研究了采用MEMS技术制造的具有横向凹槽和脊状结构的无源微混频器。利用商业软件CFD-ACE(U)进行数值模拟,在雷诺数为0.05 ~ 50范围内,预测了不同微观结构模式对混合效率的影响。从混合指数的角度分析了雷诺数等非量纲参数和几何参数对混合性能的影响。利用PDMS制成的微混合器,研究了不同微观结构对混合特性的影响。由于流体流经嵌入在沟道顶部和底部的横向脊,可见由混沌混合引起的大量搅拌。当Re大于1时,横向脊型微混合器的混合指数开始随着Re的增大而增大。这意味着该微混合器中的流场导致了高效的混沌混合。仿真结果与实验数据进行了比较,得到了很好的吻合。最后,研究了不同数量的方向相同的横脊在一个周期内对微通道内混合性能的影响。在我们的作品中可以找到最优的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic passive micromixers with microstructures placed on the top and bottom floors of channel
The objective of this study is to present chaotic micromixers in which a series of microstructures are placed on the top and bottom floors of channels. Passive micromixers fabricated by MEMS technologies with crosswise grooves and ridges are considered. Numerical simulations using the commercial software CFD-ACE(U) are employed to predict the effects of various patterns of microstructures on mixing efficiency with the range of Reynolds number from 0.05 to 50. The influences of non-dimensional parameters such as the Reynolds number as well as the geometrical parameters on the mixing performance are presented in terms of the mixing index. Micromixers which are made of PDMS are used to investigate the mixing characteristics influenced by the different kinds of microstructures. A significant amount of stirring resulting from chaotic mixing can be seen due to the fluids flowing through the crosswise ridges embedded on the top and bottom floors of channels. While Re is greater than 1, the mixing index of the micromixer with crosswise ridges starts to increase as Re increases. This means that the flow field in this micromixer results in efficient chaotic mixing. Simulation results are presented to compare with the experimental data, and a very good agreement can be achieved. Finally, various numbers of the crosswise ridges with the same orientation in one cycle of the channels are investigated to present to the mixing performance in the microchannels. An optimal design can be found in our works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信