Graphs and Combinatorics最新文献

筛选
英文 中文
Fixing Numbers of Graphs with Symmetric and Generalized Quaternion Symmetry Groups 对称和广义四元对称群图形的固定数
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-19 DOI: 10.1007/s00373-023-02742-9
Christina Graves, L.-K. Lauderdale
{"title":"Fixing Numbers of Graphs with Symmetric and Generalized Quaternion Symmetry Groups","authors":"Christina Graves, L.-K. Lauderdale","doi":"10.1007/s00373-023-02742-9","DOIUrl":"https://doi.org/10.1007/s00373-023-02742-9","url":null,"abstract":"<p>The <i>fixing number</i> of a graph <span>(Gamma )</span> is the minimum number of vertices that, when fixed, remove all nontrivial automorphisms from the automorphism group of <span>(Gamma )</span>. This concept was extended to finite groups by Gibbons and Laison. The <i>fixing set</i> of a finite group <i>G</i> is the set of all fixing numbers of graphs whose automorphism groups are isomorphic to <i>G</i>. Surprisingly few fixing sets of groups have been established; only the fixing sets of abelian groups and dihedral groups are completely understood. However, the fixing sets of symmetric groups have been studied previously. In this article, we establish new elements of the fixing sets of symmetric groups by considering line graphs of complete graphs. We conclude by establishing the fixing sets of generalized quaternion groups.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"51 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Construction of Optimal 1-Spontaneous Emission Error Designs 最佳 1 自发发射误差设计的构建
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-19 DOI: 10.1007/s00373-023-02743-8
Junling Zhou, Na Zhang
{"title":"A Construction of Optimal 1-Spontaneous Emission Error Designs","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":"https://doi.org/10.1007/s00373-023-02743-8","url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>({{mathcal {B}}})</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>({{mathcal {B}}}_1,mathcal{B}_2,ldots ,{{mathcal {B}}}_{m})</span> of <span>({{mathcal {B}}})</span> satisfying <span>({{|{Bin {mathcal {B}}_i:, E subseteq B}|}over {|{mathcal {B}}_i|}}=mu _E )</span> for any <span>(1le ile m)</span> and <span>(Esubseteq V)</span>, <span>(|E|le t)</span>, where <span>(mu _E)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>(kmid v)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>({v-1atopwithdelims ()k-1})</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>(knot mid v)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>(vequiv -s)</span> (mod <i>k</i>), <span>(kge s+1)</span> and <span>(vge max {2k, s(2k-1)})</span>.\u0000</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"41 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equality of Ordinary and Symbolic Powers of Some Classes of Monomial Ideals 某些类单项式理想的普通幂和符号幂的等价性
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-19 DOI: 10.1007/s00373-023-02740-x
Kanoy Kumar Das
{"title":"Equality of Ordinary and Symbolic Powers of Some Classes of Monomial Ideals","authors":"Kanoy Kumar Das","doi":"10.1007/s00373-023-02740-x","DOIUrl":"https://doi.org/10.1007/s00373-023-02740-x","url":null,"abstract":"<p>In this article, our aim is to extend the class of monomial ideals for which symbolic and ordinary powers coincide. This property has been characterized for the class of edge ideals of simple graphs, and in this article, we study a completely new class of monomial ideals associated to simple graphs, namely the class of generalized edge ideals. We give a complete description of the primary components associated to the minimal associated primes of these ideals. Using this description, and assuming some conditions on the relative weights, we completely characterize the equality of ordinary and symbolic powers of generalized edge ideals. After that, we also characterize generalized edge ideals of the 3-cycle for which this equality holds.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"14 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compatible Spanning Circuits and Forbidden Induced Subgraphs 兼容跨电路和禁止诱导子图
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-19 DOI: 10.1007/s00373-023-02735-8
Zhiwei Guo, Christoph Brause, Maximilian Geißer, Ingo Schiermeyer
{"title":"Compatible Spanning Circuits and Forbidden Induced Subgraphs","authors":"Zhiwei Guo, Christoph Brause, Maximilian Geißer, Ingo Schiermeyer","doi":"10.1007/s00373-023-02735-8","DOIUrl":"https://doi.org/10.1007/s00373-023-02735-8","url":null,"abstract":"<p>A compatible spanning circuit in an edge-colored graph <i>G</i> (not necessarily properly) is defined as a closed trail containing all vertices of <i>G</i> in which any two consecutively traversed edges have distinct colors. The existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and compatible Euler tours) has been studied extensively. Recently, sufficient conditions for the existence of compatible spanning circuits visiting each vertex at least a specified number of times in specific edge-colored graphs satisfying certain degree conditions have been established. In this paper, we continue the research on sufficient conditions for the existence of such compatible s-panning circuits. We consider edge-colored graphs containing no certain forbidden induced subgraphs. As applications, we also consider the existence of such compatible spanning circuits in edge-colored graphs <i>G</i> with <i>κ</i>(<i>G</i>) ≥ <i>α</i>(<i>G</i>), <i>κ</i>(<i>G</i>) ≥ <i>α</i>(<i>G</i>) − 1 and <i>κ</i> (<i>G</i>) ≥ <i>α</i>(<i>G</i>), respectively. In this context, <i>κ</i>(<i>G</i>), <i>α</i>(<i>G</i>) and <i>κ</i> (<i>G</i>) denote the connectivity, the independence number and the edge connectivity of a graph <i>G</i>, respectively.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"5 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric 曼哈顿度量下的加权平面细分中的路径规划
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-19 DOI: 10.1007/s00373-023-02744-7
Mansoor Davoodi, Ashkan Safari
{"title":"Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric","authors":"Mansoor Davoodi, Ashkan Safari","doi":"10.1007/s00373-023-02744-7","DOIUrl":"https://doi.org/10.1007/s00373-023-02744-7","url":null,"abstract":"<p>In this paper, we consider the problem of path planning in a weighted polygonal planar subdivision. Each polygon has an associated positive weight which shows the cost of path per unit distance of movement in that polygon. The goal is to find a minimum cost path under the Manhattan metric for two given start and destination points. First, we propose an <span>(O(n^2))</span> time and space algorithm to solve this problem, where <i>n</i> is the total number of vertices in the subdivision. Then, we improve the time and space complexity of the algorithm to <span>(O(n log ^2 n))</span> and <span>(O(n log n))</span>, respectively, by applying a divide and conquer approach. We also study the case of rectilinear regions in three dimensions and show that the minimum cost path under the Manhattan metric is obtained in <span>( O(n^2 log ^3 n) )</span> time and <span>( O(n^2 log ^2 n) )</span> space.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coloring of Graphs Avoiding Bicolored Paths of a Fixed Length 避免固定长度双色路径的图形着色
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-11 DOI: 10.1007/s00373-023-02739-4
Alaittin Kırtışoğlu, Lale Özkahya
{"title":"Coloring of Graphs Avoiding Bicolored Paths of a Fixed Length","authors":"Alaittin Kırtışoğlu, Lale Özkahya","doi":"10.1007/s00373-023-02739-4","DOIUrl":"https://doi.org/10.1007/s00373-023-02739-4","url":null,"abstract":"<p>The problem of finding the minimum number of colors to color a graph properly without containing any bicolored copy of a fixed family of subgraphs has been widely studied. Most well-known examples are star coloring and acyclic coloring of graphs (Grünbaum in Isreal J Math 14(4):390–498, 1973) where bicolored copies of <span>(P_4)</span> and cycles are not allowed, respectively. In this paper, we introduce a variation of these problems and study proper coloring of graphs not containing a bicolored path of a fixed length and provide general bounds for all graphs. A <span>(P_k)</span>-coloring of an undirected graph <i>G</i> is a proper vertex coloring of <i>G</i> such that there is no bicolored copy of <span>(P_k)</span> in <i>G</i>, and the minimum number of colors needed for a <span>(P_k)</span>-coloring of <i>G</i> is called the <span>(P_k)</span>-chromatic number of <i>G</i>, denoted by <span>(s_k(G).)</span> We provide bounds on <span>(s_k(G))</span> for all graphs, in particular, proving that for any graph <i>G</i> with maximum degree <span>(dge 2,)</span> and <span>(kge 4,)</span> <span>(s_k(G)le lceil 6sqrt{10}d^{frac{k-1}{k-2}} rceil .)</span> Moreover, we find the exact values for the <span>(P_k)</span>-chromatic number of the products of some cycles and paths for <span>(k=5,6.)</span></p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Note on Polychromatic Coloring of Hereditary Hypergraph Families. 遗传超图族的多色着色注释。
IF 0.6 4区 数学
Graphs and Combinatorics Pub Date : 2024-01-01 Epub Date: 2024-11-22 DOI: 10.1007/s00373-024-02836-y
Dömötör Pálvölgyi
{"title":"Note on Polychromatic Coloring of Hereditary Hypergraph Families.","authors":"Dömötör Pálvölgyi","doi":"10.1007/s00373-024-02836-y","DOIUrl":"https://doi.org/10.1007/s00373-024-02836-y","url":null,"abstract":"<p><p>We exhibit a 5-uniform hypergraph that has no polychromatic 3-coloring, but all its restricted subhypergraphs with edges of size at least 3 are 2-colorable. This disproves a bold conjecture of Keszegh and the author, and can be considered as the first step to understand polychromatic colorings of hereditary hypergraph families better since the seminal work of Berge. We also show that our method cannot give hypergraphs of arbitrary high uniformity, and mention some connections to panchromatic colorings.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"40 6","pages":"131"},"PeriodicalIF":0.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erdős–Hajnal Problem for H-Free Hypergraphs 无 H 超图的 Erdős-Hajnal 问题
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2023-12-28 DOI: 10.1007/s00373-023-02737-6
Danila Cherkashin, Alexey Gordeev, Georgii Strukov
{"title":"Erdős–Hajnal Problem for H-Free Hypergraphs","authors":"Danila Cherkashin, Alexey Gordeev, Georgii Strukov","doi":"10.1007/s00373-023-02737-6","DOIUrl":"https://doi.org/10.1007/s00373-023-02737-6","url":null,"abstract":"<p>This paper deals with the minimum number <span>(m_H(r))</span> of edges in an <i>H</i>-free hypergraph with the chromatic number more than <i>r</i>. We show how bounds on Ramsey and Turán numbers imply bounds on <span>(m_H(r))</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"7 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signed Ramsey Numbers 有符号的拉姆齐数字
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2023-12-28 DOI: 10.1007/s00373-023-02736-7
Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty
{"title":"Signed Ramsey Numbers","authors":"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty","doi":"10.1007/s00373-023-02736-7","DOIUrl":"https://doi.org/10.1007/s00373-023-02736-7","url":null,"abstract":"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>(K_n)</span> contains either a monochromatic <span>(K_s)</span> of color 1 or <span>(K_t)</span> of color 2. Define the <i>signed Ramsey number</i> <span>(r_pm (s,t))</span> to be the smallest integer <i>n</i> for which any signing of <span>(K_n)</span> has a subgraph which switches to <span>(-K_s)</span> or <span>(+K_t)</span>. We prove the following results. </p><ol>\u0000<li>\u0000<span>(1)</span>\u0000<p><span>(r_pm (s,t)=r_pm (t,s))</span></p>\u0000</li>\u0000<li>\u0000<span>(2)</span>\u0000<p><span>(r_pm (s,t)ge leftlfloor frac{s-1}{2}rightrfloor (t-1))</span></p>\u0000</li>\u0000<li>\u0000<span>(3)</span>\u0000<p><span>(r_pm (s,t)le r(s-1,t-1)+1)</span></p>\u0000</li>\u0000<li>\u0000<span>(4)</span>\u0000<p><span>(r_pm (3,t)=t)</span></p>\u0000</li>\u0000<li>\u0000<span>(5)</span>\u0000<p><span>(r_pm (4,4)=7)</span></p>\u0000</li>\u0000<li>\u0000<span>(6)</span>\u0000<p><span>(r_pm (4,5)=8)</span></p>\u0000</li>\u0000<li>\u0000<span>(7)</span>\u0000<p><span>(r_pm (4,6)=10)</span></p>\u0000</li>\u0000<li>\u0000<span>(8)</span>\u0000<p><span>(3!leftlfloor frac{t}{2}rightrfloor le r_pm (4,t+1)le 3t-1)</span></p>\u0000</li>\u0000</ol>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some New Constructions of Difference Systems of Sets 集合差分系统的一些新构造
IF 0.7 4区 数学
Graphs and Combinatorics Pub Date : 2023-12-23 DOI: 10.1007/s00373-023-02729-6
Shuyu Shen, Jingjun Bao
{"title":"Some New Constructions of Difference Systems of Sets","authors":"Shuyu Shen, Jingjun Bao","doi":"10.1007/s00373-023-02729-6","DOIUrl":"https://doi.org/10.1007/s00373-023-02729-6","url":null,"abstract":"<p>Difference systems of sets (DSSs) are combinatorial structures introduced by Levenshtein, which are a generalization of cyclic difference sets and arise in connection with code synchronization. In this paper, we describe four direct constructions of optimal DSSs from finite projective geometries and present a recursive construction of DSSs by extending the known construction. As a consequence, new infinite families of optimal DSSs can be obtained.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"11 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139028537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信