Coloring of Graphs Avoiding Bicolored Paths of a Fixed Length

Pub Date : 2024-01-11 DOI:10.1007/s00373-023-02739-4
Alaittin Kırtışoğlu, Lale Özkahya
{"title":"Coloring of Graphs Avoiding Bicolored Paths of a Fixed Length","authors":"Alaittin Kırtışoğlu, Lale Özkahya","doi":"10.1007/s00373-023-02739-4","DOIUrl":null,"url":null,"abstract":"<p>The problem of finding the minimum number of colors to color a graph properly without containing any bicolored copy of a fixed family of subgraphs has been widely studied. Most well-known examples are star coloring and acyclic coloring of graphs (Grünbaum in Isreal J Math 14(4):390–498, 1973) where bicolored copies of <span>\\(P_4\\)</span> and cycles are not allowed, respectively. In this paper, we introduce a variation of these problems and study proper coloring of graphs not containing a bicolored path of a fixed length and provide general bounds for all graphs. A <span>\\(P_k\\)</span>-coloring of an undirected graph <i>G</i> is a proper vertex coloring of <i>G</i> such that there is no bicolored copy of <span>\\(P_k\\)</span> in <i>G</i>, and the minimum number of colors needed for a <span>\\(P_k\\)</span>-coloring of <i>G</i> is called the <span>\\(P_k\\)</span>-chromatic number of <i>G</i>, denoted by <span>\\(s_k(G).\\)</span> We provide bounds on <span>\\(s_k(G)\\)</span> for all graphs, in particular, proving that for any graph <i>G</i> with maximum degree <span>\\(d\\ge 2,\\)</span> and <span>\\(k\\ge 4,\\)</span> <span>\\(s_k(G)\\le \\lceil 6\\sqrt{10}d^{\\frac{k-1}{k-2}} \\rceil .\\)</span> Moreover, we find the exact values for the <span>\\(P_k\\)</span>-chromatic number of the products of some cycles and paths for <span>\\(k=5,6.\\)</span></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02739-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of finding the minimum number of colors to color a graph properly without containing any bicolored copy of a fixed family of subgraphs has been widely studied. Most well-known examples are star coloring and acyclic coloring of graphs (Grünbaum in Isreal J Math 14(4):390–498, 1973) where bicolored copies of \(P_4\) and cycles are not allowed, respectively. In this paper, we introduce a variation of these problems and study proper coloring of graphs not containing a bicolored path of a fixed length and provide general bounds for all graphs. A \(P_k\)-coloring of an undirected graph G is a proper vertex coloring of G such that there is no bicolored copy of \(P_k\) in G, and the minimum number of colors needed for a \(P_k\)-coloring of G is called the \(P_k\)-chromatic number of G, denoted by \(s_k(G).\) We provide bounds on \(s_k(G)\) for all graphs, in particular, proving that for any graph G with maximum degree \(d\ge 2,\) and \(k\ge 4,\) \(s_k(G)\le \lceil 6\sqrt{10}d^{\frac{k-1}{k-2}} \rceil .\) Moreover, we find the exact values for the \(P_k\)-chromatic number of the products of some cycles and paths for \(k=5,6.\)

Abstract Image

分享
查看原文
避免固定长度双色路径的图形着色
人们已经广泛研究了如何找到最少的颜色数来对一个图进行适当着色,而又不包含固定子图族的任何双色副本的问题。最著名的例子是图的星形着色和非循环着色(Grünbaum in Isreal J Math 14(4):390-498,1973),在这两个例子中,分别不允许有 \(P_4\) 和循环的双色副本。在本文中,我们将引入这些问题的变体,研究不包含固定长度双色路径的图的适当着色,并为所有图提供一般界限。一个无向图 G 的 \(P_k\)- 着色是 G 的适当顶点着色,使得 G 中不存在 \(P_k\) 的双色副本,G 的 \(P_k\)- 着色所需的最小颜色数称为 G 的 \(P_k\)- 色度数,用 \(s_k(G).\) 表示。我们提供了所有图的\(s_k(G)\)的边界,特别是证明了对于任何具有最大度(d\ge 2,\)和(k\ge 4,\)的图 G,\(s_k(G)\le \lceil 6\sqrt{10}d^{frac{k-1}{k-2}}.\rceil .\)此外,我们还找到了一些循环和路径的乘积的(P_k)-色数的精确值(k=5,6.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信