曼哈顿度量下的加权平面细分中的路径规划

IF 0.6 4区 数学 Q3 MATHEMATICS
Mansoor Davoodi, Ashkan Safari
{"title":"曼哈顿度量下的加权平面细分中的路径规划","authors":"Mansoor Davoodi, Ashkan Safari","doi":"10.1007/s00373-023-02744-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the problem of path planning in a weighted polygonal planar subdivision. Each polygon has an associated positive weight which shows the cost of path per unit distance of movement in that polygon. The goal is to find a minimum cost path under the Manhattan metric for two given start and destination points. First, we propose an <span>\\(O(n^2)\\)</span> time and space algorithm to solve this problem, where <i>n</i> is the total number of vertices in the subdivision. Then, we improve the time and space complexity of the algorithm to <span>\\(O(n \\log ^2 n)\\)</span> and <span>\\(O(n \\log n)\\)</span>, respectively, by applying a divide and conquer approach. We also study the case of rectilinear regions in three dimensions and show that the minimum cost path under the Manhattan metric is obtained in <span>\\( O(n^2 \\log ^3 n) \\)</span> time and <span>\\( O(n^2 \\log ^2 n) \\)</span> space.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric\",\"authors\":\"Mansoor Davoodi, Ashkan Safari\",\"doi\":\"10.1007/s00373-023-02744-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the problem of path planning in a weighted polygonal planar subdivision. Each polygon has an associated positive weight which shows the cost of path per unit distance of movement in that polygon. The goal is to find a minimum cost path under the Manhattan metric for two given start and destination points. First, we propose an <span>\\\\(O(n^2)\\\\)</span> time and space algorithm to solve this problem, where <i>n</i> is the total number of vertices in the subdivision. Then, we improve the time and space complexity of the algorithm to <span>\\\\(O(n \\\\log ^2 n)\\\\)</span> and <span>\\\\(O(n \\\\log n)\\\\)</span>, respectively, by applying a divide and conquer approach. We also study the case of rectilinear regions in three dimensions and show that the minimum cost path under the Manhattan metric is obtained in <span>\\\\( O(n^2 \\\\log ^3 n) \\\\)</span> time and <span>\\\\( O(n^2 \\\\log ^2 n) \\\\)</span> space.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02744-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02744-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑的是加权多边形平面细分中的路径规划问题。每个多边形都有一个相关的正权重,权重表示在该多边形中单位移动距离的路径成本。我们的目标是为两个给定的起点和终点找到曼哈顿度量下成本最小的路径。首先,我们提出了一种时空算法(O(n^2))来解决这个问题,其中 n 是细分区域中顶点的总数。然后,我们通过分而治之的方法将算法的时间和空间复杂度分别提高到了\(O(n \log ^2 n)\)和\(O(n \log n)\)。我们还研究了三维直线区域的情况,结果表明,在曼哈顿度量条件下,可以在 \( O(n^2 \log ^3 n) \) 时间和 \( O(n^2 \log ^2 n) \) 空间内获得最小成本路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric

Path Planning in a Weighted Planar Subdivision Under the Manhattan Metric

In this paper, we consider the problem of path planning in a weighted polygonal planar subdivision. Each polygon has an associated positive weight which shows the cost of path per unit distance of movement in that polygon. The goal is to find a minimum cost path under the Manhattan metric for two given start and destination points. First, we propose an \(O(n^2)\) time and space algorithm to solve this problem, where n is the total number of vertices in the subdivision. Then, we improve the time and space complexity of the algorithm to \(O(n \log ^2 n)\) and \(O(n \log n)\), respectively, by applying a divide and conquer approach. We also study the case of rectilinear regions in three dimensions and show that the minimum cost path under the Manhattan metric is obtained in \( O(n^2 \log ^3 n) \) time and \( O(n^2 \log ^2 n) \) space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信