{"title":"最佳 1 自发发射误差设计的构建","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":null,"url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\({{\\mathcal {B}}}\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\({{\\mathcal {B}}}_1,\\mathcal{B}_2,\\ldots ,{{\\mathcal {B}}}_{m}\\)</span> of <span>\\({{\\mathcal {B}}}\\)</span> satisfying <span>\\({{|\\{B\\in {\\mathcal {B}}_i:\\, E \\subseteq B\\}|}\\over {|{\\mathcal {B}}_i|}}=\\mu _E \\)</span> for any <span>\\(1\\le i\\le m\\)</span> and <span>\\(E\\subseteq V\\)</span>, <span>\\(|E|\\le t\\)</span>, where <span>\\(\\mu _E\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\(k\\mid v\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\({v-1\\atopwithdelims ()k-1}\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\(k\\not \\mid v\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\(v\\equiv -s\\)</span> (mod <i>k</i>), <span>\\(k\\ge s+1\\)</span> and <span>\\(v\\ge \\max \\{2k, s(2k-1)\\}\\)</span>.\n</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"41 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction of Optimal 1-Spontaneous Emission Error Designs\",\"authors\":\"Junling Zhou, Na Zhang\",\"doi\":\"10.1007/s00373-023-02743-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\\\({{\\\\mathcal {B}}}_1,\\\\mathcal{B}_2,\\\\ldots ,{{\\\\mathcal {B}}}_{m}\\\\)</span> of <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> satisfying <span>\\\\({{|\\\\{B\\\\in {\\\\mathcal {B}}_i:\\\\, E \\\\subseteq B\\\\}|}\\\\over {|{\\\\mathcal {B}}_i|}}=\\\\mu _E \\\\)</span> for any <span>\\\\(1\\\\le i\\\\le m\\\\)</span> and <span>\\\\(E\\\\subseteq V\\\\)</span>, <span>\\\\(|E|\\\\le t\\\\)</span>, where <span>\\\\(\\\\mu _E\\\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\\\(k\\\\mid v\\\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\\\({v-1\\\\atopwithdelims ()k-1}\\\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\\\(k\\\\not \\\\mid v\\\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\\\(v\\\\equiv -s\\\\)</span> (mod <i>k</i>), <span>\\\\(k\\\\ge s+1\\\\)</span> and <span>\\\\(v\\\\ge \\\\max \\\\{2k, s(2k-1)\\\\}\\\\)</span>.\\n</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02743-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02743-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
一个 t 自发排放误差设计,用 t-(v,k.m)SEED 或 t-SEED 表示;m) SEED 或简称 t-SEED,是一个 v 集 V 的 k 个子集的系统({{\mathcal {B}}\) ,其分区为 ({{\mathcal {B}}}_1、\的分割({{mathcal {B}}_2,\ldots ,{{mathcal {B}}_{m}\) 满足\({|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E \subseteq V\), \(|E|le t\), where \(\mu _E\) is a constant depending on E.t-(v, k; m) SEED 是一个重要的组合对象,在量子跳转码中有应用。数字 m 称为 t-SEED 的维度,它对应于量子跳跃码中正交基态的数量。对于给定的 v、k 和 t,当 m 达到最大可能维度时,t-(v, k; m) SEED 被称为最优。当 \(k\mid v\) 时,最优 1-(v, k; m) SEED 的维数为\({v-1atopwithdelims ()k-1}\) 并且可以通过巴兰雅定理构造。本论文研究了最优的 1-(v,k;m)SEED,其维度为 (k (not (mid v)),其中 Baranyai 定理的广义发挥了重要作用。具体来说,我们为所有正整数v, k, s构造了一个最优的1-(v, k; m) SEED,它具有(v\equiv -s\)(mod k)、(k\ge s+1\)和(v\ge \max \{2k,s(2k-1)\})。
A Construction of Optimal 1-Spontaneous Emission Error Designs
A t-spontaneous emission error design, denoted by t-(v, k; m) SEED or t-SEED in short, is a system \({{\mathcal {B}}}\) of k-subsets of a v-set V with a partition \({{\mathcal {B}}}_1,\mathcal{B}_2,\ldots ,{{\mathcal {B}}}_{m}\) of \({{\mathcal {B}}}\) satisfying \({{|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E\subseteq V\), \(|E|\le t\), where \(\mu _E\) is a constant depending only on E. A t-(v, k; m) SEED is an important combinatorial object with applications in quantum jump codes. The number m is called the dimension of the t-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given v, k and t, a t-(v, k; m) SEED is called optimal when m achieves the largest possible dimension. When \(k\mid v\), an optimal 1-(v, k; m) SEED has dimension \({v-1\atopwithdelims ()k-1}\) and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(v, k; m) SEEDs with \(k\not \mid v\), in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(v, k; m) SEED for all positive integers v, k, s with \(v\equiv -s\) (mod k), \(k\ge s+1\) and \(v\ge \max \{2k, s(2k-1)\}\).
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.