最佳 1 自发发射误差设计的构建

IF 0.6 4区 数学 Q3 MATHEMATICS
Junling Zhou, Na Zhang
{"title":"最佳 1 自发发射误差设计的构建","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":null,"url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\({{\\mathcal {B}}}\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\({{\\mathcal {B}}}_1,\\mathcal{B}_2,\\ldots ,{{\\mathcal {B}}}_{m}\\)</span> of <span>\\({{\\mathcal {B}}}\\)</span> satisfying <span>\\({{|\\{B\\in {\\mathcal {B}}_i:\\, E \\subseteq B\\}|}\\over {|{\\mathcal {B}}_i|}}=\\mu _E \\)</span> for any <span>\\(1\\le i\\le m\\)</span> and <span>\\(E\\subseteq V\\)</span>, <span>\\(|E|\\le t\\)</span>, where <span>\\(\\mu _E\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\(k\\mid v\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\({v-1\\atopwithdelims ()k-1}\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\(k\\not \\mid v\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\(v\\equiv -s\\)</span> (mod <i>k</i>), <span>\\(k\\ge s+1\\)</span> and <span>\\(v\\ge \\max \\{2k, s(2k-1)\\}\\)</span>.\n</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"41 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction of Optimal 1-Spontaneous Emission Error Designs\",\"authors\":\"Junling Zhou, Na Zhang\",\"doi\":\"10.1007/s00373-023-02743-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\\\({{\\\\mathcal {B}}}_1,\\\\mathcal{B}_2,\\\\ldots ,{{\\\\mathcal {B}}}_{m}\\\\)</span> of <span>\\\\({{\\\\mathcal {B}}}\\\\)</span> satisfying <span>\\\\({{|\\\\{B\\\\in {\\\\mathcal {B}}_i:\\\\, E \\\\subseteq B\\\\}|}\\\\over {|{\\\\mathcal {B}}_i|}}=\\\\mu _E \\\\)</span> for any <span>\\\\(1\\\\le i\\\\le m\\\\)</span> and <span>\\\\(E\\\\subseteq V\\\\)</span>, <span>\\\\(|E|\\\\le t\\\\)</span>, where <span>\\\\(\\\\mu _E\\\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\\\(k\\\\mid v\\\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\\\({v-1\\\\atopwithdelims ()k-1}\\\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\\\(k\\\\not \\\\mid v\\\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\\\(v\\\\equiv -s\\\\)</span> (mod <i>k</i>), <span>\\\\(k\\\\ge s+1\\\\)</span> and <span>\\\\(v\\\\ge \\\\max \\\\{2k, s(2k-1)\\\\}\\\\)</span>.\\n</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02743-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02743-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个 t 自发排放误差设计,用 t-(v,k.m)SEED 或 t-SEED 表示;m) SEED 或简称 t-SEED,是一个 v 集 V 的 k 个子集的系统({{\mathcal {B}}\) ,其分区为 ({{\mathcal {B}}}_1、\的分割({{mathcal {B}}_2,\ldots ,{{mathcal {B}}_{m}\) 满足\({|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E \subseteq V\), \(|E|le t\), where \(\mu _E\) is a constant depending on E.t-(v, k; m) SEED 是一个重要的组合对象,在量子跳转码中有应用。数字 m 称为 t-SEED 的维度,它对应于量子跳跃码中正交基态的数量。对于给定的 v、k 和 t,当 m 达到最大可能维度时,t-(v, k; m) SEED 被称为最优。当 \(k\mid v\) 时,最优 1-(v, k; m) SEED 的维数为\({v-1atopwithdelims ()k-1}\) 并且可以通过巴兰雅定理构造。本论文研究了最优的 1-(v,k;m)SEED,其维度为 (k (not (mid v)),其中 Baranyai 定理的广义发挥了重要作用。具体来说,我们为所有正整数v, k, s构造了一个最优的1-(v, k; m) SEED,它具有(v\equiv -s\)(mod k)、(k\ge s+1\)和(v\ge \max \{2k,s(2k-1)\})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Construction of Optimal 1-Spontaneous Emission Error Designs

A t-spontaneous emission error design, denoted by t-(vkm) SEED or t-SEED in short, is a system \({{\mathcal {B}}}\) of k-subsets of a v-set V with a partition \({{\mathcal {B}}}_1,\mathcal{B}_2,\ldots ,{{\mathcal {B}}}_{m}\) of \({{\mathcal {B}}}\) satisfying \({{|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E\subseteq V\), \(|E|\le t\), where \(\mu _E\) is a constant depending only on E. A t-(vkm) SEED is an important combinatorial object with applications in quantum jump codes. The number m is called the dimension of the t-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given v, k and t, a t-(vkm) SEED is called optimal when m achieves the largest possible dimension. When \(k\mid v\), an optimal 1-(vkm) SEED has dimension \({v-1\atopwithdelims ()k-1}\) and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(vkm) SEEDs with \(k\not \mid v\), in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(vkm) SEED for all positive integers vks with \(v\equiv -s\) (mod k), \(k\ge s+1\) and \(v\ge \max \{2k, s(2k-1)\}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信