{"title":"某些类单项式理想的普通幂和符号幂的等价性","authors":"Kanoy Kumar Das","doi":"10.1007/s00373-023-02740-x","DOIUrl":null,"url":null,"abstract":"<p>In this article, our aim is to extend the class of monomial ideals for which symbolic and ordinary powers coincide. This property has been characterized for the class of edge ideals of simple graphs, and in this article, we study a completely new class of monomial ideals associated to simple graphs, namely the class of generalized edge ideals. We give a complete description of the primary components associated to the minimal associated primes of these ideals. Using this description, and assuming some conditions on the relative weights, we completely characterize the equality of ordinary and symbolic powers of generalized edge ideals. After that, we also characterize generalized edge ideals of the 3-cycle for which this equality holds.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equality of Ordinary and Symbolic Powers of Some Classes of Monomial Ideals\",\"authors\":\"Kanoy Kumar Das\",\"doi\":\"10.1007/s00373-023-02740-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, our aim is to extend the class of monomial ideals for which symbolic and ordinary powers coincide. This property has been characterized for the class of edge ideals of simple graphs, and in this article, we study a completely new class of monomial ideals associated to simple graphs, namely the class of generalized edge ideals. We give a complete description of the primary components associated to the minimal associated primes of these ideals. Using this description, and assuming some conditions on the relative weights, we completely characterize the equality of ordinary and symbolic powers of generalized edge ideals. After that, we also characterize generalized edge ideals of the 3-cycle for which this equality holds.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02740-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02740-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Equality of Ordinary and Symbolic Powers of Some Classes of Monomial Ideals
In this article, our aim is to extend the class of monomial ideals for which symbolic and ordinary powers coincide. This property has been characterized for the class of edge ideals of simple graphs, and in this article, we study a completely new class of monomial ideals associated to simple graphs, namely the class of generalized edge ideals. We give a complete description of the primary components associated to the minimal associated primes of these ideals. Using this description, and assuming some conditions on the relative weights, we completely characterize the equality of ordinary and symbolic powers of generalized edge ideals. After that, we also characterize generalized edge ideals of the 3-cycle for which this equality holds.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.