{"title":"A Construction of Optimal 1-Spontaneous Emission Error Designs","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":null,"url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\({{\\mathcal {B}}}\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\({{\\mathcal {B}}}_1,\\mathcal{B}_2,\\ldots ,{{\\mathcal {B}}}_{m}\\)</span> of <span>\\({{\\mathcal {B}}}\\)</span> satisfying <span>\\({{|\\{B\\in {\\mathcal {B}}_i:\\, E \\subseteq B\\}|}\\over {|{\\mathcal {B}}_i|}}=\\mu _E \\)</span> for any <span>\\(1\\le i\\le m\\)</span> and <span>\\(E\\subseteq V\\)</span>, <span>\\(|E|\\le t\\)</span>, where <span>\\(\\mu _E\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\(k\\mid v\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\({v-1\\atopwithdelims ()k-1}\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\(k\\not \\mid v\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\(v\\equiv -s\\)</span> (mod <i>k</i>), <span>\\(k\\ge s+1\\)</span> and <span>\\(v\\ge \\max \\{2k, s(2k-1)\\}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02743-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A t-spontaneous emission error design, denoted by t-(v, k; m) SEED or t-SEED in short, is a system \({{\mathcal {B}}}\) of k-subsets of a v-set V with a partition \({{\mathcal {B}}}_1,\mathcal{B}_2,\ldots ,{{\mathcal {B}}}_{m}\) of \({{\mathcal {B}}}\) satisfying \({{|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E\subseteq V\), \(|E|\le t\), where \(\mu _E\) is a constant depending only on E. A t-(v, k; m) SEED is an important combinatorial object with applications in quantum jump codes. The number m is called the dimension of the t-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given v, k and t, a t-(v, k; m) SEED is called optimal when m achieves the largest possible dimension. When \(k\mid v\), an optimal 1-(v, k; m) SEED has dimension \({v-1\atopwithdelims ()k-1}\) and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(v, k; m) SEEDs with \(k\not \mid v\), in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(v, k; m) SEED for all positive integers v, k, s with \(v\equiv -s\) (mod k), \(k\ge s+1\) and \(v\ge \max \{2k, s(2k-1)\}\).