A Construction of Optimal 1-Spontaneous Emission Error Designs

Pub Date : 2024-01-19 DOI:10.1007/s00373-023-02743-8
Junling Zhou, Na Zhang
{"title":"A Construction of Optimal 1-Spontaneous Emission Error Designs","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":null,"url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\({{\\mathcal {B}}}\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\({{\\mathcal {B}}}_1,\\mathcal{B}_2,\\ldots ,{{\\mathcal {B}}}_{m}\\)</span> of <span>\\({{\\mathcal {B}}}\\)</span> satisfying <span>\\({{|\\{B\\in {\\mathcal {B}}_i:\\, E \\subseteq B\\}|}\\over {|{\\mathcal {B}}_i|}}=\\mu _E \\)</span> for any <span>\\(1\\le i\\le m\\)</span> and <span>\\(E\\subseteq V\\)</span>, <span>\\(|E|\\le t\\)</span>, where <span>\\(\\mu _E\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\(k\\mid v\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\({v-1\\atopwithdelims ()k-1}\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\(k\\not \\mid v\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\(v\\equiv -s\\)</span> (mod <i>k</i>), <span>\\(k\\ge s+1\\)</span> and <span>\\(v\\ge \\max \\{2k, s(2k-1)\\}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02743-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A t-spontaneous emission error design, denoted by t-(vkm) SEED or t-SEED in short, is a system \({{\mathcal {B}}}\) of k-subsets of a v-set V with a partition \({{\mathcal {B}}}_1,\mathcal{B}_2,\ldots ,{{\mathcal {B}}}_{m}\) of \({{\mathcal {B}}}\) satisfying \({{|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E\subseteq V\), \(|E|\le t\), where \(\mu _E\) is a constant depending only on E. A t-(vkm) SEED is an important combinatorial object with applications in quantum jump codes. The number m is called the dimension of the t-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given v, k and t, a t-(vkm) SEED is called optimal when m achieves the largest possible dimension. When \(k\mid v\), an optimal 1-(vkm) SEED has dimension \({v-1\atopwithdelims ()k-1}\) and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(vkm) SEEDs with \(k\not \mid v\), in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(vkm) SEED for all positive integers vks with \(v\equiv -s\) (mod k), \(k\ge s+1\) and \(v\ge \max \{2k, s(2k-1)\}\).

分享
查看原文
最佳 1 自发发射误差设计的构建
一个 t 自发排放误差设计,用 t-(v,k.m)SEED 或 t-SEED 表示;m) SEED 或简称 t-SEED,是一个 v 集 V 的 k 个子集的系统({{\mathcal {B}}\) ,其分区为 ({{\mathcal {B}}}_1、\的分割({{mathcal {B}}_2,\ldots ,{{mathcal {B}}_{m}\) 满足\({|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E \subseteq V\), \(|E|le t\), where \(\mu _E\) is a constant depending on E.t-(v, k; m) SEED 是一个重要的组合对象,在量子跳转码中有应用。数字 m 称为 t-SEED 的维度,它对应于量子跳跃码中正交基态的数量。对于给定的 v、k 和 t,当 m 达到最大可能维度时,t-(v, k; m) SEED 被称为最优。当 \(k\mid v\) 时,最优 1-(v, k; m) SEED 的维数为\({v-1atopwithdelims ()k-1}\) 并且可以通过巴兰雅定理构造。本论文研究了最优的 1-(v,k;m)SEED,其维度为 (k (not (mid v)),其中 Baranyai 定理的广义发挥了重要作用。具体来说,我们为所有正整数v, k, s构造了一个最优的1-(v, k; m) SEED,它具有(v\equiv -s\)(mod k)、(k\ge s+1\)和(v\ge \max \{2k,s(2k-1)\})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信