{"title":"A Construction of Optimal 1-Spontaneous Emission Error Designs","authors":"Junling Zhou, Na Zhang","doi":"10.1007/s00373-023-02743-8","DOIUrl":null,"url":null,"abstract":"<p>A <i>t</i>-spontaneous emission error design, denoted by <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED or <i>t</i>-SEED in short, is a system <span>\\({{\\mathcal {B}}}\\)</span> of <i>k</i>-subsets of a <i>v</i>-set <i>V</i> with a partition <span>\\({{\\mathcal {B}}}_1,\\mathcal{B}_2,\\ldots ,{{\\mathcal {B}}}_{m}\\)</span> of <span>\\({{\\mathcal {B}}}\\)</span> satisfying <span>\\({{|\\{B\\in {\\mathcal {B}}_i:\\, E \\subseteq B\\}|}\\over {|{\\mathcal {B}}_i|}}=\\mu _E \\)</span> for any <span>\\(1\\le i\\le m\\)</span> and <span>\\(E\\subseteq V\\)</span>, <span>\\(|E|\\le t\\)</span>, where <span>\\(\\mu _E\\)</span> is a constant depending only on <i>E</i>. A <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is an important combinatorial object with applications in quantum jump codes. The number <i>m</i> is called the dimension of the <i>t</i>-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given <i>v</i>, <i>k</i> and <i>t</i>, a <i>t</i>-(<i>v</i>, <i>k</i>; <i>m</i>) SEED is called optimal when <i>m</i> achieves the largest possible dimension. When <span>\\(k\\mid v\\)</span>, an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED has dimension <span>\\({v-1\\atopwithdelims ()k-1}\\)</span> and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEEDs with <span>\\(k\\not \\mid v\\)</span>, in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(<i>v</i>, <i>k</i>; <i>m</i>) SEED for all positive integers <i>v</i>, <i>k</i>, <i>s</i> with <span>\\(v\\equiv -s\\)</span> (mod <i>k</i>), <span>\\(k\\ge s+1\\)</span> and <span>\\(v\\ge \\max \\{2k, s(2k-1)\\}\\)</span>.\n</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"41 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02743-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A t-spontaneous emission error design, denoted by t-(v, k; m) SEED or t-SEED in short, is a system \({{\mathcal {B}}}\) of k-subsets of a v-set V with a partition \({{\mathcal {B}}}_1,\mathcal{B}_2,\ldots ,{{\mathcal {B}}}_{m}\) of \({{\mathcal {B}}}\) satisfying \({{|\{B\in {\mathcal {B}}_i:\, E \subseteq B\}|}\over {|{\mathcal {B}}_i|}}=\mu _E \) for any \(1\le i\le m\) and \(E\subseteq V\), \(|E|\le t\), where \(\mu _E\) is a constant depending only on E. A t-(v, k; m) SEED is an important combinatorial object with applications in quantum jump codes. The number m is called the dimension of the t-SEED and this corresponds to the number of orthogonal basis states in a quantum jump code. For given v, k and t, a t-(v, k; m) SEED is called optimal when m achieves the largest possible dimension. When \(k\mid v\), an optimal 1-(v, k; m) SEED has dimension \({v-1\atopwithdelims ()k-1}\) and can be constructed by Baranyai’s Theorem. This note investigates optimal 1-(v, k; m) SEEDs with \(k\not \mid v\), in which a generalization of Baranyai’s Theorem plays a significant role. To be specific, we construct an optimal 1-(v, k; m) SEED for all positive integers v, k, s with \(v\equiv -s\) (mod k), \(k\ge s+1\) and \(v\ge \max \{2k, s(2k-1)\}\).
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.