有符号的拉姆齐数字

Pub Date : 2023-12-28 DOI:10.1007/s00373-023-02736-7
Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty
{"title":"有符号的拉姆齐数字","authors":"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty","doi":"10.1007/s00373-023-02736-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\(K_n\\)</span> contains either a monochromatic <span>\\(K_s\\)</span> of color 1 or <span>\\(K_t\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\(r_\\pm (s,t)\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\(K_n\\)</span> has a subgraph which switches to <span>\\(-K_s\\)</span> or <span>\\(+K_t\\)</span>. We prove the following results. </p><ol>\n<li>\n<span>(1)</span>\n<p><span>\\(r_\\pm (s,t)=r_\\pm (t,s)\\)</span></p>\n</li>\n<li>\n<span>(2)</span>\n<p><span>\\(r_\\pm (s,t)\\ge \\left\\lfloor \\frac{s-1}{2}\\right\\rfloor (t-1)\\)</span></p>\n</li>\n<li>\n<span>(3)</span>\n<p><span>\\(r_\\pm (s,t)\\le r(s-1,t-1)+1\\)</span></p>\n</li>\n<li>\n<span>(4)</span>\n<p><span>\\(r_\\pm (3,t)=t\\)</span></p>\n</li>\n<li>\n<span>(5)</span>\n<p><span>\\(r_\\pm (4,4)=7\\)</span></p>\n</li>\n<li>\n<span>(6)</span>\n<p><span>\\(r_\\pm (4,5)=8\\)</span></p>\n</li>\n<li>\n<span>(7)</span>\n<p><span>\\(r_\\pm (4,6)=10\\)</span></p>\n</li>\n<li>\n<span>(8)</span>\n<p><span>\\(3\\!\\left\\lfloor \\frac{t}{2}\\right\\rfloor \\le r_\\pm (4,t+1)\\le 3t-1\\)</span></p>\n</li>\n</ol>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed Ramsey Numbers\",\"authors\":\"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty\",\"doi\":\"10.1007/s00373-023-02736-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\\\(K_n\\\\)</span> contains either a monochromatic <span>\\\\(K_s\\\\)</span> of color 1 or <span>\\\\(K_t\\\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\\\(r_\\\\pm (s,t)\\\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\\\(K_n\\\\)</span> has a subgraph which switches to <span>\\\\(-K_s\\\\)</span> or <span>\\\\(+K_t\\\\)</span>. We prove the following results. </p><ol>\\n<li>\\n<span>(1)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)=r_\\\\pm (t,s)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(2)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\ge \\\\left\\\\lfloor \\\\frac{s-1}{2}\\\\right\\\\rfloor (t-1)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(3)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\le r(s-1,t-1)+1\\\\)</span></p>\\n</li>\\n<li>\\n<span>(4)</span>\\n<p><span>\\\\(r_\\\\pm (3,t)=t\\\\)</span></p>\\n</li>\\n<li>\\n<span>(5)</span>\\n<p><span>\\\\(r_\\\\pm (4,4)=7\\\\)</span></p>\\n</li>\\n<li>\\n<span>(6)</span>\\n<p><span>\\\\(r_\\\\pm (4,5)=8\\\\)</span></p>\\n</li>\\n<li>\\n<span>(7)</span>\\n<p><span>\\\\(r_\\\\pm (4,6)=10\\\\)</span></p>\\n</li>\\n<li>\\n<span>(8)</span>\\n<p><span>\\\\(3\\\\!\\\\left\\\\lfloor \\\\frac{t}{2}\\\\right\\\\rfloor \\\\le r_\\\\pm (4,t+1)\\\\le 3t-1\\\\)</span></p>\\n</li>\\n</ol>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02736-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02736-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 r(s, t) 是经典的双色拉姆齐数;也就是说,最小的整数 n,使得任何边的双色 \(K_n\) 包含颜色 1 的单色 \(K_s\) 或颜色 2 的单色 \(K_t\)。定义有符号的拉姆齐数(r_\pm (s,t)\)是最小的整数 n,对于这个整数,\(K_n\)的任何符号都有一个切换到\(-K_s\)或\(+K_t\)的子图。我们证明了以下结果。(1)\(r_\pm (s,t)=r_\pm (t,s)\)(2)\(r_\pm (s,t)\ge \left\lfloor \frac{s-1}{2}\right\rfloor (t-1)\)(3)\(r_\pm (s、(4)(r_\pm (3,t)=t)(5)(r_\pm (4,4)=7)(6)(r_\pm (4,5)=8)(7)(r_\pm (4,6)=10)(8)(3\!\left\lfloor \frac{t}{2}\right\rfloor \le r_\pm (4,t+1)\le 3t-1\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Signed Ramsey Numbers

分享
查看原文
Signed Ramsey Numbers

Let r(st) be the classical 2-color Ramsey number; that is, the smallest integer n such that any edge 2-colored \(K_n\) contains either a monochromatic \(K_s\) of color 1 or \(K_t\) of color 2. Define the signed Ramsey number \(r_\pm (s,t)\) to be the smallest integer n for which any signing of \(K_n\) has a subgraph which switches to \(-K_s\) or \(+K_t\). We prove the following results.

  1. (1)

    \(r_\pm (s,t)=r_\pm (t,s)\)

  2. (2)

    \(r_\pm (s,t)\ge \left\lfloor \frac{s-1}{2}\right\rfloor (t-1)\)

  3. (3)

    \(r_\pm (s,t)\le r(s-1,t-1)+1\)

  4. (4)

    \(r_\pm (3,t)=t\)

  5. (5)

    \(r_\pm (4,4)=7\)

  6. (6)

    \(r_\pm (4,5)=8\)

  7. (7)

    \(r_\pm (4,6)=10\)

  8. (8)

    \(3\!\left\lfloor \frac{t}{2}\right\rfloor \le r_\pm (4,t+1)\le 3t-1\)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信