Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty
{"title":"有符号的拉姆齐数字","authors":"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty","doi":"10.1007/s00373-023-02736-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\(K_n\\)</span> contains either a monochromatic <span>\\(K_s\\)</span> of color 1 or <span>\\(K_t\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\(r_\\pm (s,t)\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\(K_n\\)</span> has a subgraph which switches to <span>\\(-K_s\\)</span> or <span>\\(+K_t\\)</span>. We prove the following results. </p><ol>\n<li>\n<span>(1)</span>\n<p><span>\\(r_\\pm (s,t)=r_\\pm (t,s)\\)</span></p>\n</li>\n<li>\n<span>(2)</span>\n<p><span>\\(r_\\pm (s,t)\\ge \\left\\lfloor \\frac{s-1}{2}\\right\\rfloor (t-1)\\)</span></p>\n</li>\n<li>\n<span>(3)</span>\n<p><span>\\(r_\\pm (s,t)\\le r(s-1,t-1)+1\\)</span></p>\n</li>\n<li>\n<span>(4)</span>\n<p><span>\\(r_\\pm (3,t)=t\\)</span></p>\n</li>\n<li>\n<span>(5)</span>\n<p><span>\\(r_\\pm (4,4)=7\\)</span></p>\n</li>\n<li>\n<span>(6)</span>\n<p><span>\\(r_\\pm (4,5)=8\\)</span></p>\n</li>\n<li>\n<span>(7)</span>\n<p><span>\\(r_\\pm (4,6)=10\\)</span></p>\n</li>\n<li>\n<span>(8)</span>\n<p><span>\\(3\\!\\left\\lfloor \\frac{t}{2}\\right\\rfloor \\le r_\\pm (4,t+1)\\le 3t-1\\)</span></p>\n</li>\n</ol>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"9 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed Ramsey Numbers\",\"authors\":\"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty\",\"doi\":\"10.1007/s00373-023-02736-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\\\(K_n\\\\)</span> contains either a monochromatic <span>\\\\(K_s\\\\)</span> of color 1 or <span>\\\\(K_t\\\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\\\(r_\\\\pm (s,t)\\\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\\\(K_n\\\\)</span> has a subgraph which switches to <span>\\\\(-K_s\\\\)</span> or <span>\\\\(+K_t\\\\)</span>. We prove the following results. </p><ol>\\n<li>\\n<span>(1)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)=r_\\\\pm (t,s)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(2)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\ge \\\\left\\\\lfloor \\\\frac{s-1}{2}\\\\right\\\\rfloor (t-1)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(3)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\le r(s-1,t-1)+1\\\\)</span></p>\\n</li>\\n<li>\\n<span>(4)</span>\\n<p><span>\\\\(r_\\\\pm (3,t)=t\\\\)</span></p>\\n</li>\\n<li>\\n<span>(5)</span>\\n<p><span>\\\\(r_\\\\pm (4,4)=7\\\\)</span></p>\\n</li>\\n<li>\\n<span>(6)</span>\\n<p><span>\\\\(r_\\\\pm (4,5)=8\\\\)</span></p>\\n</li>\\n<li>\\n<span>(7)</span>\\n<p><span>\\\\(r_\\\\pm (4,6)=10\\\\)</span></p>\\n</li>\\n<li>\\n<span>(8)</span>\\n<p><span>\\\\(3\\\\!\\\\left\\\\lfloor \\\\frac{t}{2}\\\\right\\\\rfloor \\\\le r_\\\\pm (4,t+1)\\\\le 3t-1\\\\)</span></p>\\n</li>\\n</ol>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02736-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02736-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let r(s, t) be the classical 2-color Ramsey number; that is, the smallest integer n such that any edge 2-colored \(K_n\) contains either a monochromatic \(K_s\) of color 1 or \(K_t\) of color 2. Define the signed Ramsey number\(r_\pm (s,t)\) to be the smallest integer n for which any signing of \(K_n\) has a subgraph which switches to \(-K_s\) or \(+K_t\). We prove the following results.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.