Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty
{"title":"有符号的拉姆齐数字","authors":"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty","doi":"10.1007/s00373-023-02736-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\(K_n\\)</span> contains either a monochromatic <span>\\(K_s\\)</span> of color 1 or <span>\\(K_t\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\(r_\\pm (s,t)\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\(K_n\\)</span> has a subgraph which switches to <span>\\(-K_s\\)</span> or <span>\\(+K_t\\)</span>. We prove the following results. </p><ol>\n<li>\n<span>(1)</span>\n<p><span>\\(r_\\pm (s,t)=r_\\pm (t,s)\\)</span></p>\n</li>\n<li>\n<span>(2)</span>\n<p><span>\\(r_\\pm (s,t)\\ge \\left\\lfloor \\frac{s-1}{2}\\right\\rfloor (t-1)\\)</span></p>\n</li>\n<li>\n<span>(3)</span>\n<p><span>\\(r_\\pm (s,t)\\le r(s-1,t-1)+1\\)</span></p>\n</li>\n<li>\n<span>(4)</span>\n<p><span>\\(r_\\pm (3,t)=t\\)</span></p>\n</li>\n<li>\n<span>(5)</span>\n<p><span>\\(r_\\pm (4,4)=7\\)</span></p>\n</li>\n<li>\n<span>(6)</span>\n<p><span>\\(r_\\pm (4,5)=8\\)</span></p>\n</li>\n<li>\n<span>(7)</span>\n<p><span>\\(r_\\pm (4,6)=10\\)</span></p>\n</li>\n<li>\n<span>(8)</span>\n<p><span>\\(3\\!\\left\\lfloor \\frac{t}{2}\\right\\rfloor \\le r_\\pm (4,t+1)\\le 3t-1\\)</span></p>\n</li>\n</ol>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed Ramsey Numbers\",\"authors\":\"Mohammed A. Mutar, Vaidy Sivaraman, Daniel Slilaty\",\"doi\":\"10.1007/s00373-023-02736-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>r</i>(<i>s</i>, <i>t</i>) be the classical 2-color Ramsey number; that is, the smallest integer <i>n</i> such that any edge 2-colored <span>\\\\(K_n\\\\)</span> contains either a monochromatic <span>\\\\(K_s\\\\)</span> of color 1 or <span>\\\\(K_t\\\\)</span> of color 2. Define the <i>signed Ramsey number</i> <span>\\\\(r_\\\\pm (s,t)\\\\)</span> to be the smallest integer <i>n</i> for which any signing of <span>\\\\(K_n\\\\)</span> has a subgraph which switches to <span>\\\\(-K_s\\\\)</span> or <span>\\\\(+K_t\\\\)</span>. We prove the following results. </p><ol>\\n<li>\\n<span>(1)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)=r_\\\\pm (t,s)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(2)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\ge \\\\left\\\\lfloor \\\\frac{s-1}{2}\\\\right\\\\rfloor (t-1)\\\\)</span></p>\\n</li>\\n<li>\\n<span>(3)</span>\\n<p><span>\\\\(r_\\\\pm (s,t)\\\\le r(s-1,t-1)+1\\\\)</span></p>\\n</li>\\n<li>\\n<span>(4)</span>\\n<p><span>\\\\(r_\\\\pm (3,t)=t\\\\)</span></p>\\n</li>\\n<li>\\n<span>(5)</span>\\n<p><span>\\\\(r_\\\\pm (4,4)=7\\\\)</span></p>\\n</li>\\n<li>\\n<span>(6)</span>\\n<p><span>\\\\(r_\\\\pm (4,5)=8\\\\)</span></p>\\n</li>\\n<li>\\n<span>(7)</span>\\n<p><span>\\\\(r_\\\\pm (4,6)=10\\\\)</span></p>\\n</li>\\n<li>\\n<span>(8)</span>\\n<p><span>\\\\(3\\\\!\\\\left\\\\lfloor \\\\frac{t}{2}\\\\right\\\\rfloor \\\\le r_\\\\pm (4,t+1)\\\\le 3t-1\\\\)</span></p>\\n</li>\\n</ol>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02736-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02736-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let r(s, t) be the classical 2-color Ramsey number; that is, the smallest integer n such that any edge 2-colored \(K_n\) contains either a monochromatic \(K_s\) of color 1 or \(K_t\) of color 2. Define the signed Ramsey number\(r_\pm (s,t)\) to be the smallest integer n for which any signing of \(K_n\) has a subgraph which switches to \(-K_s\) or \(+K_t\). We prove the following results.