Compatible Spanning Circuits and Forbidden Induced Subgraphs

Pub Date : 2024-01-19 DOI:10.1007/s00373-023-02735-8
Zhiwei Guo, Christoph Brause, Maximilian Geißer, Ingo Schiermeyer
{"title":"Compatible Spanning Circuits and Forbidden Induced Subgraphs","authors":"Zhiwei Guo, Christoph Brause, Maximilian Geißer, Ingo Schiermeyer","doi":"10.1007/s00373-023-02735-8","DOIUrl":null,"url":null,"abstract":"<p>A compatible spanning circuit in an edge-colored graph <i>G</i> (not necessarily properly) is defined as a closed trail containing all vertices of <i>G</i> in which any two consecutively traversed edges have distinct colors. The existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and compatible Euler tours) has been studied extensively. Recently, sufficient conditions for the existence of compatible spanning circuits visiting each vertex at least a specified number of times in specific edge-colored graphs satisfying certain degree conditions have been established. In this paper, we continue the research on sufficient conditions for the existence of such compatible s-panning circuits. We consider edge-colored graphs containing no certain forbidden induced subgraphs. As applications, we also consider the existence of such compatible spanning circuits in edge-colored graphs <i>G</i> with <i>κ</i>(<i>G</i>) ≥ <i>α</i>(<i>G</i>), <i>κ</i>(<i>G</i>) ≥ <i>α</i>(<i>G</i>) − 1 and <i>κ</i> (<i>G</i>) ≥ <i>α</i>(<i>G</i>), respectively. In this context, <i>κ</i>(<i>G</i>), <i>α</i>(<i>G</i>) and <i>κ</i> (<i>G</i>) denote the connectivity, the independence number and the edge connectivity of a graph <i>G</i>, respectively.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02735-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A compatible spanning circuit in an edge-colored graph G (not necessarily properly) is defined as a closed trail containing all vertices of G in which any two consecutively traversed edges have distinct colors. The existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and compatible Euler tours) has been studied extensively. Recently, sufficient conditions for the existence of compatible spanning circuits visiting each vertex at least a specified number of times in specific edge-colored graphs satisfying certain degree conditions have been established. In this paper, we continue the research on sufficient conditions for the existence of such compatible s-panning circuits. We consider edge-colored graphs containing no certain forbidden induced subgraphs. As applications, we also consider the existence of such compatible spanning circuits in edge-colored graphs G with κ(G) ≥ α(G), κ(G) ≥ α(G) − 1 and κ (G) ≥ α(G), respectively. In this context, κ(G), α(G) and κ (G) denote the connectivity, the independence number and the edge connectivity of a graph G, respectively.

Abstract Image

分享
查看原文
兼容跨电路和禁止诱导子图
边缘着色图 G(不一定是正确的)中的兼容遍历环路被定义为包含 G 中所有顶点的封闭路径,其中任意两条连续遍历的边具有不同的颜色。人们对极值兼容遍历环路(即兼容汉密尔顿循环和兼容欧拉遍历)的存在进行了广泛的研究。最近,在满足一定度数条件的特定边缘着色图中,已经建立了至少访问每个顶点指定次数的兼容遍历循环存在的充分条件。在本文中,我们将继续研究这种兼容 s-panning 循环存在的充分条件。我们考虑的是不包含某些禁止诱导子图的边色图。作为应用,我们还考虑了在κ(G) ≥ α(G)、κ(G) ≥ α(G) - 1 和 κ (G) ≥ α(G)的边色图 G 中分别存在这样的兼容扫描电路。在这里,κ(G)、α(G) 和 κ (G) 分别表示图 G 的连通性、独立数和边连通性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信