Fixing Numbers of Graphs with Symmetric and Generalized Quaternion Symmetry Groups

IF 0.6 4区 数学 Q3 MATHEMATICS
Christina Graves, L.-K. Lauderdale
{"title":"Fixing Numbers of Graphs with Symmetric and Generalized Quaternion Symmetry Groups","authors":"Christina Graves, L.-K. Lauderdale","doi":"10.1007/s00373-023-02742-9","DOIUrl":null,"url":null,"abstract":"<p>The <i>fixing number</i> of a graph <span>\\(\\Gamma \\)</span> is the minimum number of vertices that, when fixed, remove all nontrivial automorphisms from the automorphism group of <span>\\(\\Gamma \\)</span>. This concept was extended to finite groups by Gibbons and Laison. The <i>fixing set</i> of a finite group <i>G</i> is the set of all fixing numbers of graphs whose automorphism groups are isomorphic to <i>G</i>. Surprisingly few fixing sets of groups have been established; only the fixing sets of abelian groups and dihedral groups are completely understood. However, the fixing sets of symmetric groups have been studied previously. In this article, we establish new elements of the fixing sets of symmetric groups by considering line graphs of complete graphs. We conclude by establishing the fixing sets of generalized quaternion groups.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02742-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The fixing number of a graph \(\Gamma \) is the minimum number of vertices that, when fixed, remove all nontrivial automorphisms from the automorphism group of \(\Gamma \). This concept was extended to finite groups by Gibbons and Laison. The fixing set of a finite group G is the set of all fixing numbers of graphs whose automorphism groups are isomorphic to G. Surprisingly few fixing sets of groups have been established; only the fixing sets of abelian groups and dihedral groups are completely understood. However, the fixing sets of symmetric groups have been studied previously. In this article, we establish new elements of the fixing sets of symmetric groups by considering line graphs of complete graphs. We conclude by establishing the fixing sets of generalized quaternion groups.

Abstract Image

对称和广义四元对称群图形的固定数
图 \(\Gamma \)的固定数是指:当固定时,能从\(\Gamma \)的自形群中移除所有非琐自形的顶点的最小数目。这个概念由 Gibbons 和 Laison 扩展到有限群。有限群 G 的固定集是其自变群与 G 同构的图的所有固定数的集合。令人惊讶的是,群的固定集很少被建立;只有无性群和二重群的固定集被完全理解。不过,对称群的固定集以前也有人研究过。在本文中,我们通过考虑完整图形的线图,建立了对称群固定集的新元素。最后,我们将建立广义四元组的固定集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信