{"title":"Vehicular Mini-LED backlight display inspection based on residual global context mechanism.","authors":"Guobao Zhao, Xi Zheng, Xiao Huang, Yijun Lu, Zhong Chen, Weijie Guo","doi":"10.1007/s12200-024-00140-4","DOIUrl":"10.1007/s12200-024-00140-4","url":null,"abstract":"<p><p>Mini-LED backlight has emerged as a promising technology for high performance LCDs, yet the massive detection of dead pixels and precise LEDs placement are constrained by the miniature scale of the Mini-LEDs. The high-resolution network (Hrnet) with mixed dilated convolution and dense upsampling convolution (MDC-DUC) module and a residual global context attention (RGCA) module has been proposed to detect the quality of vehicular Mini-LED backlights. The proposed model outperforms the baseline networks of Unet, Pspnet, Deeplabv3+, and Hrnet, with a mean intersection over union (Miou) of 86.91%. Furthermore, compared to the four baseline detection networks, our proposed model has a lower root-mean-square error (RMSE) when analyzing the position and defective count of Mini-LEDs in the prediction map by canny algorithm. This work incorporates deep learning to support production lines improve quality of Mini-LED backlights.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519276/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma photonic crystal 'kaleidoscope' with flexible control of topology and electromagnetism.","authors":"Jing Wang, Shuang Liu, Weili Fan, Shuo Wang, Cuicui Lu, Yafeng He, Fucheng Liu, Xiaoyong Hu","doi":"10.1007/s12200-024-00137-z","DOIUrl":"https://doi.org/10.1007/s12200-024-00137-z","url":null,"abstract":"<p><p>Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) 'kaleidoscope' with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC 'kaleidoscope', offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information processing at the speed of light.","authors":"Muhammad AbuGhanem","doi":"10.1007/s12200-024-00133-3","DOIUrl":"10.1007/s12200-024-00133-3","url":null,"abstract":"<p><p>In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and waveguides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative modeling of perovskite-based direct X-ray flat panel detectors.","authors":"Zihao Song, Gaozhu Wang, Jincong Pang, Zhiping Zheng, Ling Xu, Ying Zhou, Guangda Niu, Jiang Tang","doi":"10.1007/s12200-024-00136-0","DOIUrl":"https://doi.org/10.1007/s12200-024-00136-0","url":null,"abstract":"<p><p>Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of 10<sup>3</sup> μCGy<sup>-1</sup>⋅cm<sup>-2</sup>. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 μCGy<sup>-1</sup><sub>air</sub>⋅cm<sup>-2</sup>, the requirements on dark current density ranges from 10 to 100 nA⋅cm<sup>-2</sup> and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅cm<sup>-2</sup>.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-functional application of Ca<sub>2</sub>Ta<sub>2</sub>O<sub>7</sub>:Bi<sup>3+</sup>/Eu<sup>3+</sup> phosphors in multicolor tunable optical thermometry and WLED.","authors":"Jingjing Ru, Bing Zhao, Fan Zeng, Feiyun Guo, Jinhua Liu, Jianzhong Chen","doi":"10.1007/s12200-024-00134-2","DOIUrl":"10.1007/s12200-024-00134-2","url":null,"abstract":"<p><p>A series of Bi<sup>3+</sup>/Eu<sup>3+</sup> co-doped Ca<sub>2</sub>Ta<sub>2</sub>O<sub>7</sub> (CTO:Bi<sup>3+</sup>/Eu<sup>3+</sup>) phosphors were prepared by high-temperature solid-state method for dual-emission center optical thermometers and white light-emitting diode (WLED) device. By modulating the doping ratio of Bi<sup>3+</sup>/Eu<sup>3+</sup> and utilizing the energy transfer from Bi<sup>3+</sup> to Eu<sup>3+</sup>, the tunable color emission ranging from green to reddish-orange was realized. The designed CTO:0.04Bi<sup>3+</sup>/Eu<sup>3+</sup> optical thermometers exhibit significant thermochromism, superior stability, and repeatability, with maximum sensitivities of S<sub>a</sub> = 0.055 K<sup>-1</sup> (at 510 K) and S<sub>r</sub> = 1.298% K<sup>-1</sup> (at 480 K) within the temperature range of 300-510 K, owing to the different thermal quenching behaviors between Bi<sup>3+</sup> and Eu<sup>3+</sup> ions. These features indicate the potential application prospects of the prepared samples in visualized thermometer or high-temperature safety marking. Furthermore, leveraging the excellent zero-thermal-quenching performance, outstanding acid/alkali resistance, and color stability of CTO:0.04Bi<sup>3+</sup>/0.16Eu<sup>3+</sup> phosphor, a WLED device with a high R<sub>a</sub> value of 95.3 has been realized through its combination with commercially available blue and green phosphors, thereby demonstrating the potential application of CTO:0.04Bi<sup>3+</sup>/0.16Eu<sup>3+</sup> in near-UV pumped WLED devices.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Control of visible-range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces.","authors":"Avijit Maity, Vaswati Biswas, R Vijaya","doi":"10.1007/s12200-024-00135-1","DOIUrl":"10.1007/s12200-024-00135-1","url":null,"abstract":"","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinxian Zhang, Jiawei Song, Jiahao Fan, Nan Zeng, Honghui He, Valery V Tuchin, Hui Ma
{"title":"Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid.","authors":"Xinxian Zhang, Jiawei Song, Jiahao Fan, Nan Zeng, Honghui He, Valery V Tuchin, Hui Ma","doi":"10.1007/s12200-024-00132-4","DOIUrl":"10.1007/s12200-024-00132-4","url":null,"abstract":"<p><p>A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D<sub>†</sub> parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yixiang Sun, Mengyao Ni, Ming Zhao, Zhenyu Yang, Yuanlong Peng, Danhua Cao
{"title":"Low-light enhancement method with dual branch feature fusion and learnable regularized attention.","authors":"Yixiang Sun, Mengyao Ni, Ming Zhao, Zhenyu Yang, Yuanlong Peng, Danhua Cao","doi":"10.1007/s12200-024-00129-z","DOIUrl":"10.1007/s12200-024-00129-z","url":null,"abstract":"<p><p>Restricted by the lighting conditions, the images captured at night tend to suffer from color aberration, noise, and other unfavorable factors, making it difficult for subsequent vision-based applications. To solve this problem, we propose a two-stage size-controllable low-light enhancement method, named Dual Fusion Enhancement Net (DFEN). The whole algorithm is built on a double U-Net structure, implementing brightness adjustment and detail revision respectively. A dual branch feature fusion module is adopted to enhance its ability of feature extraction and aggregation. We also design a learnable regularized attention module to balance the enhancement effect on different regions. Besides, we introduce a cosine training strategy to smooth the transition of the training target from the brightness adjustment stage to the detail revision stage during the training process. The proposed DFEN is tested on several low-light datasets, and the experimental results demonstrate that the algorithm achieves superior enhancement results with the similar parameters. It is worth noting that the lightest DFEN model reaches 11 FPS for image size of 1224×1024 in an RTX 3090 GPU.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang
{"title":"Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity.","authors":"Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang","doi":"10.1007/s12200-024-00131-5","DOIUrl":"10.1007/s12200-024-00131-5","url":null,"abstract":"<p><p>In this paper, we propose a deformed Reuleaux-triangle resonator (RTR) to form exceptional point (EP) which results in the detection sensitivity enhancement of nanoparticle. After introducing single nanoparticle to the deformed RTR at EP, frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR. In addition, EP induced a result that the far field pattern of chiral mode responses significantly to external perturbation, corresponding to the change in internal chirality. Therefore, single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far field directional emission. Compared to traditional frequency splitting, the far field pattern produced in deformed RTR provides a cost-effective and convenient path to detect single nanoparticle at a long distance, without using tunable laser and external coupler. Our structure indicates great potential in high sensitivity sensor and label-free detector.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contactless integrated photonic probes: fundamentals, characteristics, and applications.","authors":"Guangze Wu, Yuanjian Wan, Zhao Wang, Xiaolong Hu, Jinwei Zeng, Yu Zhang, Jian Wang","doi":"10.1007/s12200-024-00127-1","DOIUrl":"10.1007/s12200-024-00127-1","url":null,"abstract":"<p><p>On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits (PICs). Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide, which leads to significant loss. Due to its advantages like non-invasive nature, miniaturization, and complementary metal-oxide-semiconductor (CMOS) process compatibility, a transparent monitor named the contactless integrated photonic probe (CLIPP), has been attracting great attention in recent years. The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption (SSA) effect. In this review, we first introduce the fundamentals of the CLIPP including the concept, the equivalent electric model and the impedance read-out method, and then summarize some characteristics of the CLIPP. Finally, the functional applications of the CLIPP on the identification and feedback control of optical signal are discussed, followed by a brief outlook on the prospects of the CLIPP.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}