直径梯度微纤维的精确垂直绘图:为定制非线性的级联几何。

IF 5.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Chi, Xinying He, Dezhou Lu, Shuoyang Wang, Jiahui Wu, Mengyang Jin, Xueliang Li, Zhuning Wang, Yaoguang Ma
{"title":"直径梯度微纤维的精确垂直绘图:为定制非线性的级联几何。","authors":"Hao Chi, Xinying He, Dezhou Lu, Shuoyang Wang, Jiahui Wu, Mengyang Jin, Xueliang Li, Zhuning Wang, Yaoguang Ma","doi":"10.1007/s12200-025-00160-8","DOIUrl":null,"url":null,"abstract":"<p><p>As nonlinearity is highly correlated with their geometric dimensions, precise fabrication of optical micro/nanofibers (MNFs) has been a longstanding pursuit. Existing MNFs fabrication systems typically adopt horizontal structures, which inherently introduce inaccuracy stem from asymmetry between fiber axis/geometry and chaotic environment due to high temperature airflow, vibration, etc., leading to deviations from the expected fiber morphology, especially for complex-structured MNFs. Here, we propose and manufacture a MNFs fabrication systems, effectively reducing fiber shape deviations during the fabrication process, enabling the fabrication of precise MNFs. To demonstrate the capability of our system in manufacturing precise structure MNFs, we design and fabricate diameter-gradient microfibers with four cascaded structures over a length of approximately 120 mm and a minimum diameter of about 1 μm for on-demand nonlinearity to generate supercontinuum spectrum. Eventually, we obtain supercontinuum spectrum covering 1463-1741 nm at the - 10 dB level with an efficiency of 264.62 <math><mrow><mtext>nm</mtext> <mo>/</mo> <mtext>kW</mtext></mrow> </math> , exhibiting good flatness and enabling efficient spectral broadening.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"16"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precision vertical drawing of diameter-gradient microfibers: cascaded geometries for tailored nonlinearity.\",\"authors\":\"Hao Chi, Xinying He, Dezhou Lu, Shuoyang Wang, Jiahui Wu, Mengyang Jin, Xueliang Li, Zhuning Wang, Yaoguang Ma\",\"doi\":\"10.1007/s12200-025-00160-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As nonlinearity is highly correlated with their geometric dimensions, precise fabrication of optical micro/nanofibers (MNFs) has been a longstanding pursuit. Existing MNFs fabrication systems typically adopt horizontal structures, which inherently introduce inaccuracy stem from asymmetry between fiber axis/geometry and chaotic environment due to high temperature airflow, vibration, etc., leading to deviations from the expected fiber morphology, especially for complex-structured MNFs. Here, we propose and manufacture a MNFs fabrication systems, effectively reducing fiber shape deviations during the fabrication process, enabling the fabrication of precise MNFs. To demonstrate the capability of our system in manufacturing precise structure MNFs, we design and fabricate diameter-gradient microfibers with four cascaded structures over a length of approximately 120 mm and a minimum diameter of about 1 μm for on-demand nonlinearity to generate supercontinuum spectrum. Eventually, we obtain supercontinuum spectrum covering 1463-1741 nm at the - 10 dB level with an efficiency of 264.62 <math><mrow><mtext>nm</mtext> <mo>/</mo> <mtext>kW</mtext></mrow> </math> , exhibiting good flatness and enabling efficient spectral broadening.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"18 1\",\"pages\":\"16\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12321704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-025-00160-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00160-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于光学微纳米纤维的非线性特性与其几何尺寸高度相关,因此精确制备光学微纳米纤维一直是人们长期追求的目标。现有的mnf制造系统通常采用水平结构,由于纤维轴/几何形状的不对称以及高温气流、振动等引起的混乱环境,固有地引入了不精度,导致与预期的纤维形态偏离,特别是对于结构复杂的mnf。在此,我们提出并制造了一种mnf制造系统,有效地减少了制造过程中光纤形状的偏差,从而实现了精密mnf的制造。为了证明我们的系统在制造精确结构mnf方面的能力,我们设计并制造了直径梯度微纤维,其具有四个级联结构,长度约为120 mm,最小直径约为1 μm,用于按需非线性产生超连续光谱。最终,我们获得了覆盖1463-1741 nm的超连续光谱,在- 10 dB水平,效率为264.62 nm / kW,具有良好的平坦性和高效的光谱展宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precision vertical drawing of diameter-gradient microfibers: cascaded geometries for tailored nonlinearity.

As nonlinearity is highly correlated with their geometric dimensions, precise fabrication of optical micro/nanofibers (MNFs) has been a longstanding pursuit. Existing MNFs fabrication systems typically adopt horizontal structures, which inherently introduce inaccuracy stem from asymmetry between fiber axis/geometry and chaotic environment due to high temperature airflow, vibration, etc., leading to deviations from the expected fiber morphology, especially for complex-structured MNFs. Here, we propose and manufacture a MNFs fabrication systems, effectively reducing fiber shape deviations during the fabrication process, enabling the fabrication of precise MNFs. To demonstrate the capability of our system in manufacturing precise structure MNFs, we design and fabricate diameter-gradient microfibers with four cascaded structures over a length of approximately 120 mm and a minimum diameter of about 1 μm for on-demand nonlinearity to generate supercontinuum spectrum. Eventually, we obtain supercontinuum spectrum covering 1463-1741 nm at the - 10 dB level with an efficiency of 264.62 nm / kW , exhibiting good flatness and enabling efficient spectral broadening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信