{"title":"Effect of energy back transfer from Er<sup>3+</sup> to Yb<sup>3+</sup> ions on the upconversion luminescence of Er:NaYb(MoO<sub>4</sub>)<sub>2</sub> and Yb,Er:NaBi(MoO<sub>4</sub>)<sub>2</sub>.","authors":"Miaomiao Wang, Mengyu Zhang, Shoujun Ding, Haitang Hu, Chuancheng Zhang, Yong Zou","doi":"10.1007/s12200-025-00155-5","DOIUrl":null,"url":null,"abstract":"<p><p>Under the excitation of a 980 nm laser, the visible upconversion (UC) luminescence of Er<sup>3+</sup> ions doped Yb<sup>3+</sup> ions self-activated NaYb(MoO<sub>4</sub>)<sub>2</sub> phosphor and crystal, as well as the Yb<sup>3+</sup>/Er<sup>3+</sup> ions codoped NaBi(MoO<sub>4</sub>)<sub>2</sub> crystal were investigated comprehensively. The results indicate that all three samples exhibit two significant green emission bands and a weak red emission band in the visible band corresponding to the transitions of <sup>2</sup>H<sub>11/2</sub>/<sup>4</sup>S<sub>3/2</sub> → <sup>4</sup>I<sub>15/2</sub> and <sup>4</sup>F<sub>9/2</sub> → <sup>4</sup>I<sub>15/2</sub> of Er<sup>3+</sup> ions, respectively. Through the variable power density spectra of three different samples, the relationship between the energy back transfer (EBT) process of Yb<sup>3+</sup>-Er<sup>3+</sup> ions and the power density point and Yb<sup>3+</sup> ion concentration was investigated. The EBT process was observed in both the Er<sup>3+</sup> ions doped Yb<sup>3+</sup> ions self-activated NaYb(MoO<sub>4</sub>)<sub>2</sub> phosphor and crystal, as confirmed by the luminescence image of the sample. At high power density, the Yb<sup>3+</sup> ions self-activated sample exhibited yellow luminescence, with the crystal appearing later than the phosphor. In contrast, the NaBi(MoO<sub>4</sub>)<sub>2</sub> crystal displayed bright green emission within the measured power density range. In addition, by monitoring the relative intensity change of Yb<sup>3+</sup> emission in 5 at% Er<sup>3+</sup>:NaYb(MoO<sub>4</sub>)<sub>2</sub> crystal, the generation of EBT process in self-activated samples at high power density is more directly explained. These experimental results provide a reliable basis for our comprehensive understanding of the EBT mechanism, and also provide a reliable direction for the final determination of the optimal excitation power density for optical temperature measurement.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"12"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00155-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Under the excitation of a 980 nm laser, the visible upconversion (UC) luminescence of Er3+ ions doped Yb3+ ions self-activated NaYb(MoO4)2 phosphor and crystal, as well as the Yb3+/Er3+ ions codoped NaBi(MoO4)2 crystal were investigated comprehensively. The results indicate that all three samples exhibit two significant green emission bands and a weak red emission band in the visible band corresponding to the transitions of 2H11/2/4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 of Er3+ ions, respectively. Through the variable power density spectra of three different samples, the relationship between the energy back transfer (EBT) process of Yb3+-Er3+ ions and the power density point and Yb3+ ion concentration was investigated. The EBT process was observed in both the Er3+ ions doped Yb3+ ions self-activated NaYb(MoO4)2 phosphor and crystal, as confirmed by the luminescence image of the sample. At high power density, the Yb3+ ions self-activated sample exhibited yellow luminescence, with the crystal appearing later than the phosphor. In contrast, the NaBi(MoO4)2 crystal displayed bright green emission within the measured power density range. In addition, by monitoring the relative intensity change of Yb3+ emission in 5 at% Er3+:NaYb(MoO4)2 crystal, the generation of EBT process in self-activated samples at high power density is more directly explained. These experimental results provide a reliable basis for our comprehensive understanding of the EBT mechanism, and also provide a reliable direction for the final determination of the optimal excitation power density for optical temperature measurement.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more