Hao Li, Rong Zhao, Binyu Rao, Xinyu Ye, Baolai Yang, Meng Wang, Zhixian Li, Zilun Chen, Zefeng Wang, Jinbao Chen
{"title":"Composite fiber Bragg grating written by femtosecond laser for Raman suppression in high-power fiber oscillators.","authors":"Hao Li, Rong Zhao, Binyu Rao, Xinyu Ye, Baolai Yang, Meng Wang, Zhixian Li, Zilun Chen, Zefeng Wang, Jinbao Chen","doi":"10.1007/s12200-025-00165-3","DOIUrl":null,"url":null,"abstract":"<p><p>High-power fiber oscillators have been widely used in industrial processing, high-end manufacturing, biomedicine and so on. However, as the output power increase, stimulated Raman scattering (SRS) becomes the main factor limiting the performance improvement of fiber oscillators. In this paper, a chirped and tilted fiber Bragg grating (CTFBG) is used to suppress SRS in a high-power fiber oscillator. The CTFBG is fabricated on one side of a low-reflectivity FBG (LRFBG) to form a composite FBG by the femtosecond laser phase mask technology, enhancing the compactness and stability of the fiber oscillator system. SRS is effectively suppressed by CTFBG with a Raman suppression depth and width of 16 dB and 86 nm, respectively, and the Raman light ratio in the output power decreases by an order of magnitude. The output power of fiber oscillators is increased to 9 kW, which is the highest power for fiber oscillators with SRS suppression using CTFBGs, to the best of our knowledge. This work demonstrates that the composite FBG can effectively improve the performance of high-power fiber oscillators, which provides new insights into the development of fiber laser technology.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"21"},"PeriodicalIF":5.2000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12540215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00165-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
High-power fiber oscillators have been widely used in industrial processing, high-end manufacturing, biomedicine and so on. However, as the output power increase, stimulated Raman scattering (SRS) becomes the main factor limiting the performance improvement of fiber oscillators. In this paper, a chirped and tilted fiber Bragg grating (CTFBG) is used to suppress SRS in a high-power fiber oscillator. The CTFBG is fabricated on one side of a low-reflectivity FBG (LRFBG) to form a composite FBG by the femtosecond laser phase mask technology, enhancing the compactness and stability of the fiber oscillator system. SRS is effectively suppressed by CTFBG with a Raman suppression depth and width of 16 dB and 86 nm, respectively, and the Raman light ratio in the output power decreases by an order of magnitude. The output power of fiber oscillators is increased to 9 kW, which is the highest power for fiber oscillators with SRS suppression using CTFBGs, to the best of our knowledge. This work demonstrates that the composite FBG can effectively improve the performance of high-power fiber oscillators, which provides new insights into the development of fiber laser technology.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more