Hongqing Li, Wenjing Tang, Yingshuang Shan, Jing Wang, Kai Jiang, Mingqi Fan, Tao Chen, Cheng Zhou, Wei Xia
{"title":"Nonlinear saturable absorption properties of BP/ReS<sub>2</sub> heterojunction and its application in 2 μm all-solid-state lasers.","authors":"Hongqing Li, Wenjing Tang, Yingshuang Shan, Jing Wang, Kai Jiang, Mingqi Fan, Tao Chen, Cheng Zhou, Wei Xia","doi":"10.1007/s12200-025-00157-3","DOIUrl":null,"url":null,"abstract":"<p><p>For 2 μm all-solid-state lasers, pulse modulation methods based on low-dimensional nanomaterial saturable absorbers (SAs) offer advantages such as compact structure, low cost, and ease of implementation. The construction of stable, highly nonlinear low-dimensional nanomaterial SAs is an urgent issue to be addressed. In this paper, two types of black phosphorus/rhenium disulfide (BP/ReS<sub>2</sub>) heterojunction with high stability were prepared separately by liquid phase exfoliation (LPE) and mechanical exfoliation (ME) methods, the nonlinear saturable absorption characteristics of the two types of heterojunctions have been characterized in detail. Then, the pulse modulation applications of these two materials have been studied in a 2 μm all-solid-state thulium-doped yttrium aluminum perovskite (Tm:YAP) passively Q-switched pulsed laser. The BP/ReS<sub>2</sub> heterojunction SA prepared by the LPE method demonstrates a thinner thickness and lower non-saturation optical loss, which achieved the maximum average output power 528 mW at a pump power of 6.37 W, with a narrowest pulse width of 366 ns, and a maximum peak power of 28.85 W. These results indicate that the BP/ReS<sub>2</sub> heterojunction SA has great potential for optical modulation device applications.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"14"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00157-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For 2 μm all-solid-state lasers, pulse modulation methods based on low-dimensional nanomaterial saturable absorbers (SAs) offer advantages such as compact structure, low cost, and ease of implementation. The construction of stable, highly nonlinear low-dimensional nanomaterial SAs is an urgent issue to be addressed. In this paper, two types of black phosphorus/rhenium disulfide (BP/ReS2) heterojunction with high stability were prepared separately by liquid phase exfoliation (LPE) and mechanical exfoliation (ME) methods, the nonlinear saturable absorption characteristics of the two types of heterojunctions have been characterized in detail. Then, the pulse modulation applications of these two materials have been studied in a 2 μm all-solid-state thulium-doped yttrium aluminum perovskite (Tm:YAP) passively Q-switched pulsed laser. The BP/ReS2 heterojunction SA prepared by the LPE method demonstrates a thinner thickness and lower non-saturation optical loss, which achieved the maximum average output power 528 mW at a pump power of 6.37 W, with a narrowest pulse width of 366 ns, and a maximum peak power of 28.85 W. These results indicate that the BP/ReS2 heterojunction SA has great potential for optical modulation device applications.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more