Frontiers in Neurorobotics最新文献

筛选
英文 中文
Robust visual SLAM algorithm based on target detection and clustering in dynamic scenarios 基于动态场景中目标检测和聚类的鲁棒视觉 SLAM 算法
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-07-23 DOI: 10.3389/fnbot.2024.1431897
Fubao Gan, Shanyong Xu, Linya Jiang, Yuwen Liu, Quanzeng Liu, Shihao Lan
{"title":"Robust visual SLAM algorithm based on target detection and clustering in dynamic scenarios","authors":"Fubao Gan, Shanyong Xu, Linya Jiang, Yuwen Liu, Quanzeng Liu, Shihao Lan","doi":"10.3389/fnbot.2024.1431897","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1431897","url":null,"abstract":"We propose a visual Simultaneous Localization and Mapping (SLAM) algorithm that integrates target detection and clustering techniques in dynamic scenarios to address the vulnerability of traditional SLAM algorithms to moving targets. The proposed algorithm integrates the target detection module into the front end of the SLAM and identifies dynamic objects within the visual range by improving the YOLOv5. Feature points associated with the dynamic objects are disregarded, and only those that correspond to static targets are utilized for frame-to-frame matching. This approach effectively addresses the camera pose estimation in dynamic environments, enhances system positioning accuracy, and optimizes the visual SLAM performance. Experiments on the TUM public dataset and comparison with the traditional ORB-SLAM3 algorithm and DS-SLAM algorithm validate that the proposed visual SLAM algorithm demonstrates an average improvement of 85.70 and 30.92% in positioning accuracy in highly dynamic scenarios. In comparison to the DynaSLAM system using MASK-RCNN, our system exhibits superior real-time performance while maintaining a comparable ATE index. These results highlight that our pro-posed SLAM algorithm effectively reduces pose estimation errors, enhances positioning accuracy, and showcases enhanced robustness compared to conventional visual SLAM algorithms.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"54 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141774590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I-BaR: integrated balance rehabilitation framework I-BaR:综合平衡康复框架
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-07-03 DOI: 10.3389/fnbot.2024.1401931
Tugce Ersoy, Pınar Kaya, Elif Hocaoglu, Ramazan Unal
{"title":"I-BaR: integrated balance rehabilitation framework","authors":"Tugce Ersoy, Pınar Kaya, Elif Hocaoglu, Ramazan Unal","doi":"10.3389/fnbot.2024.1401931","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1401931","url":null,"abstract":"Neurological diseases are observed in approximately 1 billion people worldwide. A further increase is foreseen at the global level as a result of population growth and aging. Individuals with neurological disorders often experience cognitive, motor, sensory, and lower extremity dysfunctions. Thus, the possibility of falling and balance problems arise due to the postural control deficiencies that occur as a result of the deterioration in the integration of multi-sensory information. We propose a novel rehabilitation framework, Integrated Balance Rehabilitation (I-BaR), to improve the effectiveness of the rehabilitation with objective assessment, individualized therapy, convenience with different disability levels and adoption of assist-as-needed paradigm and, with integrated rehabilitation process as whole, that is, ankle-foot preparation, balance, and stepping phases, respectively. Integrated Balance Rehabilitation allows patients to improve their balance ability by providing multi-modal feedback: visual via utilization of virtual reality; vestibular via anteroposterior and mediolateral perturbations with the robotic platform; proprioceptive via haptic feedback.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"49 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141532147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMG-YOLO: road crack detection algorithm for edge computing devices EMG-YOLO:边缘计算设备的道路裂缝检测算法
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-07-02 DOI: 10.3389/fnbot.2024.1423738
Yan Xing, Xu Han, Xiaodong Pan, Dong An, Weidong Liu, Yuanshen Bai
{"title":"EMG-YOLO: road crack detection algorithm for edge computing devices","authors":"Yan Xing, Xu Han, Xiaodong Pan, Dong An, Weidong Liu, Yuanshen Bai","doi":"10.3389/fnbot.2024.1423738","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1423738","url":null,"abstract":"IntroductionRoad cracks significantly shorten the service life of roads. Manual detection methods are inefficient and costly. The YOLOv5 model has made some progress in road crack detection. However, issues arise when deployed on edge computing devices. The main problem is that edge computing devices are directly connected to sensors. This results in the collection of noisy, poor-quality data. This problem adds computational burden to the model, potentially impacting its accuracy. To address these issues, this paper proposes a novel road crack detection algorithm named EMG-YOLO.MethodsFirst, an Efficient Decoupled Header is introduced in YOLOv5 to optimize the head structure. This approach separates the classification task from the localization task. Each task can then focus on learning its most relevant features. This significantly reduces the model’s computational resources and time. It also achieves faster convergence rates. Second, the IOU loss function in the model is upgraded to the MPDIOU loss function. This function works by minimizing the top-left and bottom-right point distances between the predicted bounding box and the actual labeled bounding box. The MPDIOU loss function addresses the complex computation and high computational burden of the current YOLOv5 model. Finally, the GCC3 module replaces the traditional convolution. It performs global context modeling with the input feature map to obtain global context information. This enhances the model’s detection capabilities on edge computing devices.ResultsExperimental results show that the improved model has better performance in all parameter indicators compared to current mainstream algorithms. The EMG-YOLO model improves the accuracy of the YOLOv5 model by 2.7%. The mAP (0.5) and mAP (0.9) are improved by 2.9% and 0.9%, respectively. The new algorithm also outperforms the YOLOv5 model in complex environments on edge computing devices.DiscussionThe EMG-YOLO algorithm proposed in this paper effectively addresses the issues of poor data quality and high computational burden on edge computing devices. This is achieved through optimizing the model head structure, upgrading the loss function, and introducing global context modeling. Experimental results demonstrate significant improvements in both accuracy and efficiency, especially in complex environments. Future research can further optimize this algorithm and explore more lightweight and efficient object detection models for edge computing devices.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"29 17 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transmission line foreign body detection algorithm based on weighted spatial attention 基于加权空间注意力的输电线异物检测算法
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-06-26 DOI: 10.3389/fnbot.2024.1424158
Yuanyuan Wang, Haiyang Tian, Tongtong Yin, Zhaoyu Song, Abdullahi Suleiman Hauwa, Haiyan Zhang, Shangbing Gao, Liguo Zhou
{"title":"The transmission line foreign body detection algorithm based on weighted spatial attention","authors":"Yuanyuan Wang, Haiyang Tian, Tongtong Yin, Zhaoyu Song, Abdullahi Suleiman Hauwa, Haiyan Zhang, Shangbing Gao, Liguo Zhou","doi":"10.3389/fnbot.2024.1424158","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1424158","url":null,"abstract":"IntroductionThe secure operation of electric power transmission lines is essential for the economy and society. However, external factors such as plastic film and kites can cause damage to the lines, potentially leading to power outages. Traditional detection methods are inefficient, and the accuracy of automated systems is limited in complex background environments.MethodsThis paper introduces a Weighted Spatial Attention (WSA) network model to address the low accuracy in identifying extraneous materials within electrical transmission infrastructure due to background texture occlusion. Initially, in the model preprocessing stage, color space conversion, image enhancement, and improved Large Selective Kernel Network (LSKNet) technology are utilized to enhance the model's proficiency in detecting foreign objects in intricate surroundings. Subsequently, in the feature extraction stage, the model adopts the dynamic sparse BiLevel Spatial Attention Module (BSAM) structure proposed in this paper to accurately capture and identify the characteristic information of foreign objects in power lines. In the feature pyramid stage, by replacing the feature pyramid network structure and allocating reasonable weights to the Bidirectional Feature Pyramid Network (BiFPN), the feature fusion results are optimized, ensuring that the semantic information of foreign objects in the power line output by the network is effectively identified and processed.ResultsThe experimental outcomes reveal that the test recognition accuracy of the proposed WSA model on the PL (power line) dataset has improved by three percentage points compared to that of the YOLOv8 model, reaching 97.6%. This enhancement demonstrates the WSA model's superior capability in detecting foreign objects on power lines, even in complex environmental backgrounds.DiscussionThe integration of advanced image preprocessing techniques, the dynamic sparse BSAM structure, and the BiFPN has proven effective in improving detection accuracy and has the potential to transform the approach to monitoring and maintaining power transmission infrastructure.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"78 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intuitive and versatile bionic legs: a perspective on volitional control 直观且多功能的仿生腿:意志控制的视角
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-06-21 DOI: 10.3389/fnbot.2024.1410760
Matthias Voß, Anne D. Koelewijn, Philipp Beckerle
{"title":"Intuitive and versatile bionic legs: a perspective on volitional control","authors":"Matthias Voß, Anne D. Koelewijn, Philipp Beckerle","doi":"10.3389/fnbot.2024.1410760","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1410760","url":null,"abstract":"Active lower limb prostheses show large potential to offer energetic, balance, and versatility improvements to users when compared to passive and semi-active devices. Still, their control remains a major development challenge, with many different approaches existing. This perspective aims at illustrating a future leg prosthesis control approach to improve the everyday life of prosthesis users, while providing a research road map for getting there. Reviewing research on the needs and challenges faced by prosthesis users, we argue for the development of versatile control architectures for lower limb prosthetic devices that grant the wearer full volitional control at all times. To this end, existing control approaches for active lower limb prostheses are divided based on their consideration of volitional user input. The presented methods are discussed in regard to their suitability for universal everyday control involving user volition. Novel combinations of established methods are proposed. This involves the combination of feed-forward motor control signals with simulated feedback loops in prosthesis control, as well as online optimization techniques to individualize the system parameters. To provide more context, developments related to volitional control design are touched on.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"336 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers | Enhanced LSTM-based robotic agent for load forecasting in low-voltage distributed photovoltaic power distribution network 前沿|基于 LSTM 的增强型机器人代理,用于低压分布式光伏配电网的负荷预测
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-05-31 DOI: 10.3389/fnbot.2024.1431643
Xudong Zhang, Junlong Wang, Jun Wang, Hao Wang, Lijun Lu
{"title":"Frontiers | Enhanced LSTM-based robotic agent for load forecasting in low-voltage distributed photovoltaic power distribution network","authors":"Xudong Zhang, Junlong Wang, Jun Wang, Hao Wang, Lijun Lu","doi":"10.3389/fnbot.2024.1431643","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1431643","url":null,"abstract":"To ensure the safe operation and dispatching control of a low-voltage distributed photovoltaic (PV) power distribution network (PDN), the load forecasting problem of the PDN is studied in this study. Based on deep learning technology, this paper proposes a robot-assisted load forecasting method for low-voltage distributed photovoltaic power distribution networks using enhanced long short-term memory (LSTM). This method employs the frequency domain decomposition (FDD) to obtain boundary points and incorporates a dense layer following the LSTM layer to better extract data features. The LSTM is used to predict low-frequency and high-frequency components separately, enabling the model to precisely capture the voltage variation patterns across different frequency components, thereby achieving high-precision voltage prediction. By verifying the historical operation data set of a low-voltage distributed PV-PDN in Guangdong Province, experimental results demonstrate that the proposed “FDD+LSTM” model outperforms both recurrent neural network and support vector machine models in terms of prediction accuracy on both time scales of 1 h and 4 h. Precisely forecast the voltage in different seasons and time scales, which has a certain value in promoting the development of the PDN and related technology industry chain.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"55 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On designing a configurable UAV autopilot for unmanned quadrotors 关于为无人驾驶四旋翼飞行器设计可配置的 UAV 自动驾驶仪
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-05-30 DOI: 10.3389/fnbot.2024.1363366
Ali Bhar, Mounir Sayadi
{"title":"On designing a configurable UAV autopilot for unmanned quadrotors","authors":"Ali Bhar, Mounir Sayadi","doi":"10.3389/fnbot.2024.1363366","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1363366","url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) and quadrotors are being used in an increasing number of applications. The detection and management of forest fires is continually improved by the incorporation of new economical technologies in order to prevent ecological degradation and disasters. Using an inner-outer loop design, this paper discusses an attitude and altitude controller for a quadrotor. As a highly nonlinear system, quadrotor dynamics can be simplified by assuming several assumptions. Quadrotor autopilot is developed using nonlinear feedback linearization technique, LQR, SMC, PD, and PID controllers. Often, these approaches are used to improve control and to reject disturbances. PD-PID controllers are also deployed in the tracking and surveillance of smoke or fire by intelligent algorithms. In this paper, the efficiency using a combined PD-PID controllers with adjustable parameters have been studied. The performance was assessed by simulation using matlab Simulink. The computational study conducted to assess the proposed approach showed that the PD-PID combination presented in this paper yields promising outcomes.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"60 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Recent advances in image fusion and quality improvement for cyber-physical systems, volume II. 编辑:网络物理系统图像融合与质量改进的最新进展,第 II 卷。
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-05-29 eCollection Date: 2024-01-01 DOI: 10.3389/fnbot.2024.1422982
Xin Jin, Shin-Jye Lee, Michal Wozniak, Qian Jiang
{"title":"Editorial: Recent advances in image fusion and quality improvement for cyber-physical systems, volume II.","authors":"Xin Jin, Shin-Jye Lee, Michal Wozniak, Qian Jiang","doi":"10.3389/fnbot.2024.1422982","DOIUrl":"10.3389/fnbot.2024.1422982","url":null,"abstract":"","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1422982"},"PeriodicalIF":3.1,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of robotic path planning and navigation point configuration based on convolutional neural networks 基于卷积神经网络的机器人路径规划和导航点配置优化
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-05-20 DOI: 10.3389/fnbot.2024.1406658
Jian Wu, Huan Li, Bangjie Li, Xiaolong Zheng, Daqiao Zhang
{"title":"Optimization of robotic path planning and navigation point configuration based on convolutional neural networks","authors":"Jian Wu, Huan Li, Bangjie Li, Xiaolong Zheng, Daqiao Zhang","doi":"10.3389/fnbot.2024.1406658","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1406658","url":null,"abstract":"This study introduces a novel approach for enhancing robotic path planning and navigation by optimizing point configuration through convolutional neural networks (CNNs). Faced with the challenge of precise area coverage and the inefficiency of traditional traversal and intelligent algorithms (e.g., genetic algorithms, particle swarm optimization) in point layout, we proposed a CNN-based optimization model. This model not only tackles the issues of speed and accuracy in point configuration with Gaussian distribution characteristics but also significantly improves the robot's capability to efficiently navigate and cover designated areas with high precision. Our methodology begins with defining a coverage index, followed by an optimization model that integrates polygon image features with the variability of Gaussian distribution. The proposed CNN model is trained with datasets generated from systematic point configurations, which then predicts optimal layouts for enhanced navigation. Our method achieves an experimental result error of <8% on the test dataset. The results validate effectiveness of the proposed model in achieving efficient and accurate path planning for robotic systems.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"26 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework for neurosymbolic robot action planning using large language models 使用大型语言模型的神经符号机器人行动规划框架
IF 3.1 4区 计算机科学
Frontiers in Neurorobotics Pub Date : 2024-05-15 DOI: 10.3389/fnbot.2024.1342786
Alessio Capitanelli, Fulvio Mastrogiovanni
{"title":"A framework for neurosymbolic robot action planning using large language models","authors":"Alessio Capitanelli, Fulvio Mastrogiovanni","doi":"10.3389/fnbot.2024.1342786","DOIUrl":"https://doi.org/10.3389/fnbot.2024.1342786","url":null,"abstract":"Symbolic task planning is a widely used approach to enforce robot autonomy due to its ease of understanding and deployment in engineered robot architectures. However, techniques for symbolic task planning are difficult to scale in real-world, highly dynamic, human-robot collaboration scenarios because of the poor performance in planning domains where action effects may not be immediate, or when frequent re-planning is needed due to changed circumstances in the robot workspace. The validity of plans in the long term, plan length, and planning time could hinder the robot's efficiency and negatively affect the overall human-robot interaction's fluency. We present a framework, which we refer to as Teriyaki, specifically aimed at bridging the gap between symbolic task planning and machine learning approaches. The rationale is training Large Language Models (LLMs), namely GPT-3, into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL), and then leveraging its generative capabilities to overcome a number of limitations inherent to symbolic task planners. Potential benefits include (i) a better scalability in so far as the planning domain complexity increases, since LLMs' response time linearly scales with the combined length of the input and the output, instead of super-linearly as in the case of symbolic task planners, and (ii) the ability to synthesize a plan action-by-action instead of end-to-end, and to make each action available for execution as soon as it is generated instead of waiting for the whole plan to be available, which in turn enables concurrent planning and execution. In the past year, significant efforts have been devoted by the research community to evaluate the overall cognitive capabilities of LLMs, with alternate successes. Instead, with Teriyaki we aim to providing an overall planning performance comparable to traditional planners in specific planning domains, while leveraging LLMs capabilities in other metrics, specifically those related to their short- and mid-term generative capabilities, which are used to build a look-ahead predictive planning model. Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"119 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信