{"title":"基于无监督学习驱动的建筑规划机器人进行空间优化。","authors":"Zhe Zhang, Yuchun Zheng","doi":"10.3389/fnbot.2024.1517960","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Space optimization in architectural planning is a crucial task for maximizing functionality and improving user experience in built environments. Traditional approaches often rely on manual planning or supervised learning techniques, which can be limited by the availability of labeled data and may not adapt well to complex spatial requirements.</p><p><strong>Methods: </strong>To address these limitations, this paper presents a novel architectural planning robot driven by unsupervised learning for automatic space optimization. The proposed framework integrates spatial attention, clustering, and state refinement mechanisms to autonomously learn and optimize spatial configurations without the need for labeled training data. The spatial attention mechanism focuses the model on key areas within the architectural space, clustering identifies functional zones, and state refinement iteratively improves the spatial layout by adjusting based on learned patterns. Experiments conducted on multiple 3D datasets demonstrate the effectiveness of the proposed approach in achieving optimized space layouts with reduced computational requirements.</p><p><strong>Results and discussion: </strong>The results show significant improvements in layout efficiency and processing time compared to traditional methods, indicating the potential for real-world applications in automated architectural planning and dynamic space management. This work contributes to the field by providing a scalable solution for architectural space optimization that adapts to diverse spatial requirements through unsupervised learning.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1517960"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Architectural planning robot driven by unsupervised learning for space optimization.\",\"authors\":\"Zhe Zhang, Yuchun Zheng\",\"doi\":\"10.3389/fnbot.2024.1517960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Space optimization in architectural planning is a crucial task for maximizing functionality and improving user experience in built environments. Traditional approaches often rely on manual planning or supervised learning techniques, which can be limited by the availability of labeled data and may not adapt well to complex spatial requirements.</p><p><strong>Methods: </strong>To address these limitations, this paper presents a novel architectural planning robot driven by unsupervised learning for automatic space optimization. The proposed framework integrates spatial attention, clustering, and state refinement mechanisms to autonomously learn and optimize spatial configurations without the need for labeled training data. The spatial attention mechanism focuses the model on key areas within the architectural space, clustering identifies functional zones, and state refinement iteratively improves the spatial layout by adjusting based on learned patterns. Experiments conducted on multiple 3D datasets demonstrate the effectiveness of the proposed approach in achieving optimized space layouts with reduced computational requirements.</p><p><strong>Results and discussion: </strong>The results show significant improvements in layout efficiency and processing time compared to traditional methods, indicating the potential for real-world applications in automated architectural planning and dynamic space management. This work contributes to the field by providing a scalable solution for architectural space optimization that adapts to diverse spatial requirements through unsupervised learning.</p>\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"18 \",\"pages\":\"1517960\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1517960\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1517960","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Architectural planning robot driven by unsupervised learning for space optimization.
Introduction: Space optimization in architectural planning is a crucial task for maximizing functionality and improving user experience in built environments. Traditional approaches often rely on manual planning or supervised learning techniques, which can be limited by the availability of labeled data and may not adapt well to complex spatial requirements.
Methods: To address these limitations, this paper presents a novel architectural planning robot driven by unsupervised learning for automatic space optimization. The proposed framework integrates spatial attention, clustering, and state refinement mechanisms to autonomously learn and optimize spatial configurations without the need for labeled training data. The spatial attention mechanism focuses the model on key areas within the architectural space, clustering identifies functional zones, and state refinement iteratively improves the spatial layout by adjusting based on learned patterns. Experiments conducted on multiple 3D datasets demonstrate the effectiveness of the proposed approach in achieving optimized space layouts with reduced computational requirements.
Results and discussion: The results show significant improvements in layout efficiency and processing time compared to traditional methods, indicating the potential for real-world applications in automated architectural planning and dynamic space management. This work contributes to the field by providing a scalable solution for architectural space optimization that adapts to diverse spatial requirements through unsupervised learning.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.