EEG-powered cerebral transformer for athletic performance.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2024-12-20 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1499734
Qikai Sun
{"title":"EEG-powered cerebral transformer for athletic performance.","authors":"Qikai Sun","doi":"10.3389/fnbot.2024.1499734","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In recent years, with advancements in wearable devices and biosignal analysis technologies, sports performance analysis has become an increasingly popular research field, particularly due to the growing demand for real-time monitoring of athletes' conditions in sports training and competitive events. Traditional methods of sports performance analysis typically rely on video data or sensor data for motion recognition. However, unimodal data often fails to fully capture the neural state of athletes, leading to limitations in accuracy and real-time performance when dealing with complex movement patterns. Moreover, these methods struggle with multimodal data fusion, making it difficult to fully leverage the deep information from electroencephalogram (EEG) signals.</p><p><strong>Methods: </strong>To address these challenges, this paper proposes a \"Cerebral Transformer\" model based on EEG signals and video data. By employing an adaptive attention mechanism and cross-modal fusion, the model effectively combines EEG signals and video streams to achieve precise recognition and analysis of athletes' movements. The model's effectiveness was validated through experiments on four datasets: SEED, DEAP, eSports Sensors, and MODA. The results show that the proposed model outperforms existing mainstream methods in terms of accuracy, recall, and F1 score, while also demonstrating high computational efficiency.</p><p><strong>Results and discussion: </strong>The significance of this study lies in providing a more comprehensive and efficient solution for sports performance analysis. Through cross-modal data fusion, it not only improves the accuracy of complex movement recognition but also provides technical support for monitoring athletes' neural states, offering important applications in sports training and medical rehabilitation.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1499734"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1499734","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In recent years, with advancements in wearable devices and biosignal analysis technologies, sports performance analysis has become an increasingly popular research field, particularly due to the growing demand for real-time monitoring of athletes' conditions in sports training and competitive events. Traditional methods of sports performance analysis typically rely on video data or sensor data for motion recognition. However, unimodal data often fails to fully capture the neural state of athletes, leading to limitations in accuracy and real-time performance when dealing with complex movement patterns. Moreover, these methods struggle with multimodal data fusion, making it difficult to fully leverage the deep information from electroencephalogram (EEG) signals.

Methods: To address these challenges, this paper proposes a "Cerebral Transformer" model based on EEG signals and video data. By employing an adaptive attention mechanism and cross-modal fusion, the model effectively combines EEG signals and video streams to achieve precise recognition and analysis of athletes' movements. The model's effectiveness was validated through experiments on four datasets: SEED, DEAP, eSports Sensors, and MODA. The results show that the proposed model outperforms existing mainstream methods in terms of accuracy, recall, and F1 score, while also demonstrating high computational efficiency.

Results and discussion: The significance of this study lies in providing a more comprehensive and efficient solution for sports performance analysis. Through cross-modal data fusion, it not only improves the accuracy of complex movement recognition but also provides technical support for monitoring athletes' neural states, offering important applications in sports training and medical rehabilitation.

用于运动表现的脑电图驱动的大脑变压器。
引言:近年来,随着可穿戴设备和生物信号分析技术的进步,运动表现分析已经成为一个越来越受欢迎的研究领域,特别是在运动训练和竞技项目中对运动员状态实时监测的需求越来越大。传统的运动表现分析方法通常依赖于视频数据或传感器数据进行运动识别。然而,单峰数据往往不能完全捕捉运动员的神经状态,导致在处理复杂的运动模式时,准确性和实时性受到限制。此外,这些方法在多模态数据融合方面存在困难,难以充分利用脑电图(EEG)信号中的深层信息。方法:针对这些问题,本文提出了一种基于脑电信号和视频数据的“大脑变压器”模型。该模型采用自适应注意机制和跨模态融合,有效地将脑电信号和视频流结合起来,实现对运动员运动的精确识别和分析。通过SEED、DEAP、eSports Sensors和MODA四个数据集的实验验证了该模型的有效性。结果表明,该模型在准确率、查全率和F1分数方面均优于现有主流方法,同时也显示出较高的计算效率。结果与讨论:本研究的意义在于为运动成绩分析提供更全面、更高效的解决方案。通过跨模态数据融合,不仅提高了复杂动作识别的准确性,而且为监测运动员的神经状态提供了技术支持,在运动训练和医学康复中具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信