{"title":"RL-QPSO net: deep reinforcement learning-enhanced QPSO for efficient mobile robot path planning.","authors":"Yang Jing, Li Weiya","doi":"10.3389/fnbot.2024.1464572","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.</p><p><strong>Methods: </strong>To address these issues, this paper presents a Quantum-behaved Particle Swarm Optimization model enhanced by deep reinforcement learning (RL-QPSO Net) aimed at improving global optimality and adaptability in path planning. The RL-QPSO Net combines quantum-inspired particle swarm optimization (QPSO) and deep reinforcement learning (DRL) modules through a dual control mechanism to achieve path optimization and environmental adaptation. The QPSO module is responsible for global path optimization, using quantum mechanics to avoid local optima, while the DRL module adjusts strategies in real-time based on environmental feedback, thus enhancing decision-making capabilities in complex high-dimensional scenarios.</p><p><strong>Results and discussion: </strong>Experiments were conducted on multiple datasets, including Cityscapes, NYU Depth V2, Mapillary Vistas, and ApolloScape, and the results showed that RL-QPSO Net outperforms traditional methods in terms of accuracy, computational efficiency, and model complexity. This method demonstrated significant improvements in accuracy and computational efficiency, providing an effective path planning solution for real-time applications in complex environments for mobile robots. In the future, this method could be further extended to resource-limited environments to achieve broader practical applications.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1464572"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1464572","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Path planning in complex and dynamic environments poses a significant challenge in the field of mobile robotics. Traditional path planning methods such as genetic algorithms, Dijkstra's algorithm, and Floyd's algorithm typically rely on deterministic search strategies, which can lead to local optima and lack global search capabilities in dynamic settings. These methods have high computational costs and are not efficient for real-time applications.
Methods: To address these issues, this paper presents a Quantum-behaved Particle Swarm Optimization model enhanced by deep reinforcement learning (RL-QPSO Net) aimed at improving global optimality and adaptability in path planning. The RL-QPSO Net combines quantum-inspired particle swarm optimization (QPSO) and deep reinforcement learning (DRL) modules through a dual control mechanism to achieve path optimization and environmental adaptation. The QPSO module is responsible for global path optimization, using quantum mechanics to avoid local optima, while the DRL module adjusts strategies in real-time based on environmental feedback, thus enhancing decision-making capabilities in complex high-dimensional scenarios.
Results and discussion: Experiments were conducted on multiple datasets, including Cityscapes, NYU Depth V2, Mapillary Vistas, and ApolloScape, and the results showed that RL-QPSO Net outperforms traditional methods in terms of accuracy, computational efficiency, and model complexity. This method demonstrated significant improvements in accuracy and computational efficiency, providing an effective path planning solution for real-time applications in complex environments for mobile robots. In the future, this method could be further extended to resource-limited environments to achieve broader practical applications.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.