Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Neurorobotics Pub Date : 2025-01-07 eCollection Date: 2024-01-01 DOI:10.3389/fnbot.2024.1481746
Jiyao Liu, Lang He, Haifeng Chen, Dongmei Jiang
{"title":"Directional Spatial and Spectral Attention Network (DSSA Net) for EEG-based emotion recognition.","authors":"Jiyao Liu, Lang He, Haifeng Chen, Dongmei Jiang","doi":"10.3389/fnbot.2024.1481746","DOIUrl":null,"url":null,"abstract":"<p><p>Significant strides have been made in emotion recognition from Electroencephalography (EEG) signals. However, effectively modeling the diverse spatial, spectral, and temporal features of multi-channel brain signals remains a challenge. This paper proposes a novel framework, the Directional Spatial and Spectral Attention Network (DSSA Net), which enhances emotion recognition accuracy by capturing critical spatial-spectral-temporal features from EEG signals. The framework consists of three modules: Positional Attention (PA), Spectral Attention (SA), and Temporal Attention (TA). The PA module includes Vertical Attention (VA) and Horizontal Attention (HA) branches, designed to detect active brain regions from different orientations. Experimental results on three benchmark EEG datasets demonstrate that DSSA Net outperforms most competitive methods. On the SEED and SEED-IV datasets, it achieves accuracies of 96.61% and 85.07% for subject-dependent emotion recognition, respectively, and 87.03% and 75.86% for subject-independent recognition. On the DEAP dataset, it attains accuracies of 94.97% for valence and 94.73% for arousal. These results showcase the framework's ability to leverage both spatial and spectral differences across brain hemispheres and regions, enhancing classification accuracy for emotion recognition.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1481746"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747697/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1481746","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Significant strides have been made in emotion recognition from Electroencephalography (EEG) signals. However, effectively modeling the diverse spatial, spectral, and temporal features of multi-channel brain signals remains a challenge. This paper proposes a novel framework, the Directional Spatial and Spectral Attention Network (DSSA Net), which enhances emotion recognition accuracy by capturing critical spatial-spectral-temporal features from EEG signals. The framework consists of three modules: Positional Attention (PA), Spectral Attention (SA), and Temporal Attention (TA). The PA module includes Vertical Attention (VA) and Horizontal Attention (HA) branches, designed to detect active brain regions from different orientations. Experimental results on three benchmark EEG datasets demonstrate that DSSA Net outperforms most competitive methods. On the SEED and SEED-IV datasets, it achieves accuracies of 96.61% and 85.07% for subject-dependent emotion recognition, respectively, and 87.03% and 75.86% for subject-independent recognition. On the DEAP dataset, it attains accuracies of 94.97% for valence and 94.73% for arousal. These results showcase the framework's ability to leverage both spatial and spectral differences across brain hemispheres and regions, enhancing classification accuracy for emotion recognition.

基于脑电图的定向空间与频谱注意网络(DSSA Net)。
从脑电图(EEG)信号中识别情绪已经取得了重大进展。然而,如何有效地模拟多通道大脑信号的空间、频谱和时间特征仍然是一个挑战。本文提出了一种新的框架——定向空间和频谱注意网络(DSSA Net),该网络通过捕获脑电图信号中的关键空间-频谱-时间特征来提高情绪识别的准确性。该框架由三个模块组成:位置注意(PA)、频谱注意(SA)和时间注意(TA)。PA模块包括垂直注意(VA)和水平注意(HA)分支,旨在从不同方向检测活跃的大脑区域。在三个基准脑电数据集上的实验结果表明,DSSA网络优于大多数竞争方法。在SEED和SEED- iv数据集上,主体依赖情感识别的准确率分别为96.61%和85.07%,主体独立情感识别的准确率分别为87.03%和75.86%。在DEAP数据集上,它的效价准确率为94.97%,唤醒准确率为94.73%。这些结果表明,该框架能够利用大脑半球和区域之间的空间和光谱差异,提高情感识别的分类准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信