Forum Mathematicum最新文献

筛选
英文 中文
Colored multizeta values in positive characteristic 正特征中的彩色多泽塔值
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-04 DOI: 10.1515/forum-2023-0226
Ryotaro Harada
{"title":"Colored multizeta values in positive characteristic","authors":"Ryotaro Harada","doi":"10.1515/forum-2023-0226","DOIUrl":"https://doi.org/10.1515/forum-2023-0226","url":null,"abstract":"In 2004, Thakur introduced a positive characteristic analogue of multizeta values. Later, in 2017, he mentioned the two colored variants which are positive characteristic analogues of colored multizeta values in his survey of multizeta values in positive characteristic. In this paper, we study one of those two variants. We establish their fundamental properties, that include their non-vanishing, sum-shuffle relations, 𝑡-motivic interpretation and linear independence. For the linear independence results, we prove that there are no nontrivial <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mover accent=\"true\"> <m:mi>k</m:mi> <m:mo>̄</m:mo> </m:mover> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0226_ineq_0001.png\" /> <jats:tex-math>overline{k}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-linear relations among the colored multizeta values with different weights.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"54 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On projections of the tails of a power 关于幂的尾部投影
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-03 DOI: 10.1515/forum-2022-0375
Samuel M. Corson, Saharon Shelah
{"title":"On projections of the tails of a power","authors":"Samuel M. Corson, Saharon Shelah","doi":"10.1515/forum-2022-0375","DOIUrl":"https://doi.org/10.1515/forum-2022-0375","url":null,"abstract":"Let 𝜅 be an inaccessible cardinal, 𝔘 a universal algebra, and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mo&gt;∼&lt;/m:mo&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0001.png\" /&gt; &lt;jats:tex-math&gt;sim&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; the equivalence relation on &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mi mathvariant=\"fraktur\"&gt;U&lt;/m:mi&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0002.png\" /&gt; &lt;jats:tex-math&gt;mathfrak{U}^{kappa}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of eventual equality. From mild assumptions on 𝜅, we give general constructions of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"script\"&gt;E&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi&gt;End&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi mathvariant=\"fraktur\"&gt;U&lt;/m:mi&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;m:mo rspace=\"0em\"&gt;/&lt;/m:mo&gt; &lt;m:mo lspace=\"0em\" rspace=\"0em\"&gt;∼&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0003.png\" /&gt; &lt;jats:tex-math&gt;mathcal{E}inoperatorname{End}(mathfrak{U}^{kappa}/{sim})&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; satisfying &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"script\"&gt;E&lt;/m:mi&gt; &lt;m:mo lspace=\"0.222em\" rspace=\"0.222em\"&gt;∘&lt;/m:mo&gt; &lt;m:mi mathvariant=\"script\"&gt;E&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi mathvariant=\"script\"&gt;E&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0004.png\" /&gt; &lt;jats:tex-math&gt;mathcal{E}circmathcal{E}=mathcal{E}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; which do not descend from &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;End&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi mathvariant=\"fraktur\"&gt;U&lt;/m:mi&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0375_ineq_0005.png\" /&gt; &lt;jats:tex-math&gt;Deltainoperatorname{End}(mathfrak{U}^{kappa})&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; having small strong supports. As an application, there exists an &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"script\"&gt;E&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi&gt;End&lt;/m:mi&gt; ","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"45 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Euler’s integral, multiple cosine function and zeta values 欧拉积分、多重余弦函数和 zeta 值
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0426
Su Hu, Min-Soo Kim
{"title":"Euler’s integral, multiple cosine function and zeta values","authors":"Su Hu, Min-Soo Kim","doi":"10.1515/forum-2023-0426","DOIUrl":"https://doi.org/10.1515/forum-2023-0426","url":null,"abstract":"In 1769, Euler proved the following result: &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mo largeop=\"true\" symmetric=\"true\"&gt;∫&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mfrac&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mfrac&gt; &lt;/m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;log&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;sin&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mi&gt;θ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo rspace=\"4.2pt\" stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;𝑑&lt;/m:mo&gt; &lt;m:mi&gt;θ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mfrac&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;log&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;.&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0177.png\" /&gt; &lt;jats:tex-math&gt;int_{0}^{frac{pi}{2}}log(sintheta),dtheta=-frac{pi}{2}log 2.&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt; In this paper, as a generalization, we evaluate the definite integrals &lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mo largeop=\"true\" symmetric=\"true\"&gt;∫&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mi&gt;θ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mi&gt;r&lt;/m:mi&gt; &lt;m:mo&gt;-&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;log&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo maxsize=\"210%\" minsize=\"210%\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;cos&lt;/m:mi&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mfrac&gt; &lt;m:mi&gt;θ&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mfrac&gt; &lt;/m:mrow&gt; &lt;m:mo maxsize=\"210%\" minsize=\"210%\" rspace=\"4.2pt\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;𝑑&lt;/m:mo&gt; &lt;m:mi&gt;θ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0201.png\" /&gt; &lt;jats:tex-math&gt;int_{0}^{x}theta^{r-2}logbiggl{(}cosfrac{theta}{2}biggr{)},dtheta&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt; for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;r&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0426_eq_0363.png\" /&gt; &lt;jats:tex-math&gt;r=2,3,4,dots&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; . We show that it can be expressed by the special values of Kurokawa and Koyama’s multiple cosine functions &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"script\"&gt;𝒞&lt;/m:mi&gt; &lt;m:mi&gt;r&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo stretch","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Kollár-type vanishing theorem for k-positive vector bundles k 正向向量束的科拉型消失定理
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0332
Chen Zhao
{"title":"A Kollár-type vanishing theorem for k-positive vector bundles","authors":"Chen Zhao","doi":"10.1515/forum-2023-0332","DOIUrl":"https://doi.org/10.1515/forum-2023-0332","url":null,"abstract":"Given a proper holomorphic surjective morphism <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0235.png\" /> <jats:tex-math>{f:Xrightarrow Y}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between compact Kähler manifolds, and a Nakano semipositive holomorphic vector bundle <jats:italic>E</jats:italic> on <jats:italic>X</jats:italic>, we prove Kollár-type vanishing theorems on cohomologies with coefficients in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊗</m:mo> <m:mi>F</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0130.png\" /> <jats:tex-math>{R^{q}f_{ast}(omega_{X}(E))otimes F}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>F</jats:italic> is a <jats:italic>k</jats:italic>-positive vector bundle on <jats:italic>Y</jats:italic>. The main inputs in the proof are the deep results on the Nakano semipositivity of the higher direct images due to Berndtsson and Mourougane–Takayama, and an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0114.png\" /> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Dolbeault resolution of the higher direct image sheaf <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0132.png\" /> <jats:tex-math>{R^{q}f_{ast}(omega_{X}(E))}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is of interest in itself.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"18 71 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A p-adic analog of Hasse--Davenport product relation involving ϵ-factors 涉及ϵ因子的哈塞--达文波特乘积关系的 p-adic 类似物
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0347
Dani Szpruch
{"title":"A p-adic analog of Hasse--Davenport product relation involving ϵ-factors","authors":"Dani Szpruch","doi":"10.1515/forum-2023-0347","DOIUrl":"https://doi.org/10.1515/forum-2023-0347","url":null,"abstract":"In this paper we prove some generalizations of the classical Hasse–Davenport product relation for certain arithmetic factors defined on a <jats:italic>p</jats:italic>-adic field <jats:italic>F</jats:italic>, among them one finds the ϵ-factors appearing in Tate’s thesis. We then show that these generalizations are equivalent to some representation theoretic identities relating the determinant of ramified local coefficients matrices defined for coverings of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>SL</m:mi> <m:mn>2</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>F</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0347_eq_0339.png\" /> <jats:tex-math>{mathrm{SL}_{2}(F)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> to Plancherel measures and γ-factors.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"17 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some q-supercongruences from a q-analogue of Watson's 3 F 2 summation 从沃森 3 F 2 求和的 q 类比中得出的一些 q-supercongruences
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0475
Victor J. W. Guo
{"title":"Some q-supercongruences from a q-analogue of Watson's 3 F 2 summation","authors":"Victor J. W. Guo","doi":"10.1515/forum-2023-0475","DOIUrl":"https://doi.org/10.1515/forum-2023-0475","url":null,"abstract":"We give some <jats:italic>q</jats:italic>-supercongruences from a <jats:italic>q</jats:italic>-analogue of Watson’s <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mmultiscripts> <m:mi>F</m:mi> <m:mn>2</m:mn> <m:none /> <m:mprescripts /> <m:mn>3</m:mn> <m:none /> </m:mmultiscripts> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0206.png\" /> <jats:tex-math>{{}_{3}F_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> summation and the method of “creative microscoping”, introduced by the author and Zudilin. These <jats:italic>q</jats:italic>-supercongruences may be considered as further generalizations of the (A.2) supercongruence of Van Hamme modulo <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>p</m:mi> <m:mn>3</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0181.png\" /> <jats:tex-math>{p^{3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>p</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0475_eq_0180.png\" /> <jats:tex-math>{p^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for any odd prime <jats:italic>p</jats:italic>. Meanwhile, we confirm a supercongruence conjecture of Wang and Yue through establishing its <jats:italic>q</jats:italic>-analogue.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"233 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous nonvanishing of central L-values with large level 中心 L 值与大水平同时不消失
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2024-0014
Balesh Kumar, Murugesan Manickam, Karam Deo Shankhadhar
{"title":"Simultaneous nonvanishing of central L-values with large level","authors":"Balesh Kumar, Murugesan Manickam, Karam Deo Shankhadhar","doi":"10.1515/forum-2024-0014","DOIUrl":"https://doi.org/10.1515/forum-2024-0014","url":null,"abstract":"For a given normalized newform <jats:italic>f</jats:italic> of large prime level, we establish a lower bound with respect to the level for the number of normalized newforms <jats:italic>g</jats:italic> of the same weight and level as of <jats:italic>f</jats:italic> such that the central <jats:italic>L</jats:italic>-values of <jats:italic>f</jats:italic> and <jats:italic>g</jats:italic> both twisted by a quadratic character do not vanish.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"21 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140300118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic progression in a finite field with prescribed norms 具有规定规范的有限域中的算术级数
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2024-0026
Kaustav Chatterjee, Hariom Sharma, Aastha Shukla, Shailesh Kumar Tiwari
{"title":"Arithmetic progression in a finite field with prescribed norms","authors":"Kaustav Chatterjee, Hariom Sharma, Aastha Shukla, Shailesh Kumar Tiwari","doi":"10.1515/forum-2024-0026","DOIUrl":"https://doi.org/10.1515/forum-2024-0026","url":null,"abstract":"Given a prime power <jats:italic>q</jats:italic> and a positive integer <jats:italic>n</jats:italic>, let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:msup> <m:mi>q</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0026_eq_0435.png\" /> <jats:tex-math>{mathbb{F}_{q^{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> represent a finite extension of degree <jats:italic>n</jats:italic> of the finite field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔽</m:mi> <m:mi>q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0026_eq_0722.png\" /> <jats:tex-math>{{mathbb{F}_{q}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we investigate the existence of <jats:italic>m</jats:italic> elements in arithmetic progression, where every element is primitive and at least one is normal with prescribed norms. Moreover, for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>6</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0026_eq_0646.png\" /> <jats:tex-math>{ngeq 6}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>q</m:mi> <m:mo>=</m:mo> <m:msup> <m:mn>3</m:mn> <m:mi>k</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0026_eq_0678.png\" /> <jats:tex-math>{q=3^{k}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>m</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0026_eq_0621.png\" /> <jats:tex-math>{m=2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> we establish that there are only 10 possible exceptions.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"21 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimates of Picard modular cusp forms 皮卡尔模块顶点形式的估计值
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0079
Anilatmaja Aryasomayajula, Baskar Balasubramanyam, Dyuti Roy
{"title":"Estimates of Picard modular cusp forms","authors":"Anilatmaja Aryasomayajula, Baskar Balasubramanyam, Dyuti Roy","doi":"10.1515/forum-2023-0079","DOIUrl":"https://doi.org/10.1515/forum-2023-0079","url":null,"abstract":"In this article, for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo&gt;≥&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0368.png\" /&gt; &lt;jats:tex-math&gt;{ngeq 2}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, we compute asymptotic, qualitative, and quantitative estimates of the Bergman kernel of Picard modular cusp forms associated to torsion-free, cocompact subgroups of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;SU&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ℂ&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0306.png\" /&gt; &lt;jats:tex-math&gt;{mathrm{SU}((n,1),mathbb{C})}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. The main result of the article is the following result. Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Γ&lt;/m:mi&gt; &lt;m:mo&gt;⊂&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;SU&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"script\"&gt;𝒪&lt;/m:mi&gt; &lt;m:mi&gt;K&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0229.png\" /&gt; &lt;jats:tex-math&gt;{Gammasubsetmathrm{SU}((2,1),mathcal{O}_{K})}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a torsion-free subgroup of finite index, where &lt;jats:italic&gt;K&lt;/jats:italic&gt; is a totally imaginary field. Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msubsup&gt; &lt;m:mi mathvariant=\"script\"&gt;ℬ&lt;/m:mi&gt; &lt;m:mi mathvariant=\"normal\"&gt;Γ&lt;/m:mi&gt; &lt;m:mi&gt;k&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0079_eq_0408.png\" /&gt; &lt;jats:tex-math&gt;{{{mathcal{B}_{Gamma}^{k}}}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; denote the Bergman kernel associated to the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi mathvariant=\"script\"&gt;𝒮&lt;/m:mi&gt; &lt;m:mi&gt;k&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Γ&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:h","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"3 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces 具有一个固定边长的三角形、Furstenberg 型问题和有限向量空间中的事件
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-03-25 DOI: 10.1515/forum-2023-0470
Thang Pham
{"title":"Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces","authors":"Thang Pham","doi":"10.1515/forum-2023-0470","DOIUrl":"https://doi.org/10.1515/forum-2023-0470","url":null,"abstract":"The first goal of this paper is to prove a sharp condition to guarantee of having a positive proportion of all congruence classes of triangles in given sets in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;𝔽&lt;/m:mi&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:msubsup&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0275.png\" /&gt; &lt;jats:tex-math&gt;{mathbb{F}_{q}^{2}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. More precisely, for &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;A&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;B&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⊂&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;𝔽&lt;/m:mi&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:msubsup&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0164.png\" /&gt; &lt;jats:tex-math&gt;{A,B,Csubsetmathbb{F}_{q}^{2}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, if &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;A&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;B&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mfrac&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;≫&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0450.png\" /&gt; &lt;jats:tex-math&gt;{|A||B||C|^{frac{1}{2}}gg q^{4}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, then for any &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;λ&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;𝔽&lt;/m:mi&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;∖&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0267.png\" /&gt; &lt;jats:tex-math&gt;{lambdainmathbb{F}_{q}setminus{0}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, the number of congruence classes of triangles with vertices in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;A&lt;/m:mi&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mi&gt;B&lt;/m:mi&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0470_eq_0174.png\" /&gt; &lt;jats:tex-math&gt;{Atimes Btimes C}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and one side-l","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"2016 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信