k 正向向量束的科拉型消失定理

IF 1 3区 数学 Q1 MATHEMATICS
Chen Zhao
{"title":"k 正向向量束的科拉型消失定理","authors":"Chen Zhao","doi":"10.1515/forum-2023-0332","DOIUrl":null,"url":null,"abstract":"Given a proper holomorphic surjective morphism <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0235.png\" /> <jats:tex-math>{f:X\\rightarrow Y}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between compact Kähler manifolds, and a Nakano semipositive holomorphic vector bundle <jats:italic>E</jats:italic> on <jats:italic>X</jats:italic>, we prove Kollár-type vanishing theorems on cohomologies with coefficients in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊗</m:mo> <m:mi>F</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0130.png\" /> <jats:tex-math>{R^{q}f_{\\ast}(\\omega_{X}(E))\\otimes F}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>F</jats:italic> is a <jats:italic>k</jats:italic>-positive vector bundle on <jats:italic>Y</jats:italic>. The main inputs in the proof are the deep results on the Nakano semipositivity of the higher direct images due to Berndtsson and Mourougane–Takayama, and an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0114.png\" /> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Dolbeault resolution of the higher direct image sheaf <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0332_eq_0132.png\" /> <jats:tex-math>{R^{q}f_{\\ast}(\\omega_{X}(E))}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is of interest in itself.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"18 71 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Kollár-type vanishing theorem for k-positive vector bundles\",\"authors\":\"Chen Zhao\",\"doi\":\"10.1515/forum-2023-0332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a proper holomorphic surjective morphism <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mi>X</m:mi> <m:mo>→</m:mo> <m:mi>Y</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0332_eq_0235.png\\\" /> <jats:tex-math>{f:X\\\\rightarrow Y}</jats:tex-math> </jats:alternatives> </jats:inline-formula> between compact Kähler manifolds, and a Nakano semipositive holomorphic vector bundle <jats:italic>E</jats:italic> on <jats:italic>X</jats:italic>, we prove Kollár-type vanishing theorems on cohomologies with coefficients in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo>⊗</m:mo> <m:mi>F</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0332_eq_0130.png\\\" /> <jats:tex-math>{R^{q}f_{\\\\ast}(\\\\omega_{X}(E))\\\\otimes F}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:italic>F</jats:italic> is a <jats:italic>k</jats:italic>-positive vector bundle on <jats:italic>Y</jats:italic>. The main inputs in the proof are the deep results on the Nakano semipositivity of the higher direct images due to Berndtsson and Mourougane–Takayama, and an <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0332_eq_0114.png\\\" /> <jats:tex-math>{L^{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Dolbeault resolution of the higher direct image sheaf <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>R</m:mi> <m:mi>q</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:msub> <m:mi>f</m:mi> <m:mo>∗</m:mo> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mi>ω</m:mi> <m:mi>X</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>E</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0332_eq_0132.png\\\" /> <jats:tex-math>{R^{q}f_{\\\\ast}(\\\\omega_{X}(E))}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, which is of interest in itself.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"18 71 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0332\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0332","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定紧凑 Kähler 流形之间的适当全态投射态 f : X → Y {f:X\rightarrow Y} 和 X 上的中野半正全态向量束 E,我们证明了 R q f ∗ ( ω X ( E ) ) 中系数的同调上的 Kollár 型消失定理。 ⊗ F {R^{q}f_{\ast}(\omega_{X}(E))\otimes F} 。 证明的主要输入是 Berndtsson 和 Mourougane-Takayama 关于高直达像的中野半实在性的深入结果,以及一个 L 2 {L^{2}} -Dolbeault 解析。 高直映像 Sheaf R q f ∗ ( ω X ( E ) ) 的 L 2 {L^{2}} -Dolbeault 解析。 {R^{q}f_{\ast}(\omega_{X}(E))} {R^{q}f_{\ast}(\omega_{X}(E))} ,这本身就很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Kollár-type vanishing theorem for k-positive vector bundles
Given a proper holomorphic surjective morphism f : X Y {f:X\rightarrow Y} between compact Kähler manifolds, and a Nakano semipositive holomorphic vector bundle E on X, we prove Kollár-type vanishing theorems on cohomologies with coefficients in R q f ( ω X ( E ) ) F {R^{q}f_{\ast}(\omega_{X}(E))\otimes F} , where F is a k-positive vector bundle on Y. The main inputs in the proof are the deep results on the Nakano semipositivity of the higher direct images due to Berndtsson and Mourougane–Takayama, and an L 2 {L^{2}} -Dolbeault resolution of the higher direct image sheaf R q f ( ω X ( E ) ) {R^{q}f_{\ast}(\omega_{X}(E))} , which is of interest in itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信