Forum Mathematicum最新文献

筛选
英文 中文
Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic 奇特征基本经典列超及其纯偶数还原列子布拉的扎森豪斯变体的等价性
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-06-25 DOI: 10.1515/forum-2023-0326
Bin Shu, Lisun Zheng, Ye Ren
{"title":"Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic","authors":"Bin Shu, Lisun Zheng, Ye Ren","doi":"10.1515/forum-2023-0326","DOIUrl":"https://doi.org/10.1515/forum-2023-0326","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔤</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> <m:mo>⊕</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>1</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0687.png\"/> <jats:tex-math>{{mathfrak{g}}={mathfrak{g}}_{bar{0}}oplus{mathfrak{g}}_{bar{1}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a basic classical Lie superalgebra over an algebraically closed field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0676.png\"/> <jats:tex-math>{{mathbf{k}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of characteristic <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0586.png\"/> <jats:tex-math>{p>2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the center of the universal enveloping algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>𝔤</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0135.png\"/> <jats:tex-math>{U({mathfrak{g}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo st","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representations of non-finitely graded Lie algebras related to Virasoro algebra 与维拉索罗代数有关的非无限级数列代数的表示
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-06-25 DOI: 10.1515/forum-2023-0320
Chunguang Xia, Tianyu Ma, Xiao Dong, Mingjing Zhang
{"title":"Representations of non-finitely graded Lie algebras related to Virasoro algebra","authors":"Chunguang Xia, Tianyu Ma, Xiao Dong, Mingjing Zhang","doi":"10.1515/forum-2023-0320","DOIUrl":"https://doi.org/10.1515/forum-2023-0320","url":null,"abstract":"In this paper, we study representations of non-finitely graded Lie algebras <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0340.png\"/> <jats:tex-math>{mathcal{W}(epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> related to Virasoro algebra, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ϵ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0321.png\"/> <jats:tex-math>{epsilon=pm 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely speaking, we completely classify the free <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒰</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>𝔥</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0333.png\"/> <jats:tex-math>{mathcal{U}(mathfrak{h})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules of rank one over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0340.png\"/> <jats:tex-math>{mathcal{W}(epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and find that these module structures are rather different from those of other graded Lie algebras. We also determine the simplicity and isomorphism classes of these modules.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"45 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals 摩尔-彭罗斯逆的几何方法和算子理想对扰动的极性分解
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-05-14 DOI: 10.1515/forum-2024-0010
Eduardo Chiumiento, Pedro Massey
{"title":"Geometric approach to the Moore–Penrose inverse and the polar decomposition of perturbations by operator ideals","authors":"Eduardo Chiumiento, Pedro Massey","doi":"10.1515/forum-2024-0010","DOIUrl":"https://doi.org/10.1515/forum-2024-0010","url":null,"abstract":"We study the Moore–Penrose inverse of perturbations by a proper symmetrically-normed ideal of a closed range operator on a Hilbert space. We show that the notion of essential codimension of projections gives a characterization of subsets of such perturbations in which the Moore–Penrose inverse is continuous with respect to the metric induced by the operator ideal. These subsets are maximal satisfying the continuity property, and they carry the structure of real analytic Banach manifolds, which are acted upon transitively by the Banach–Lie group consisting of invertible operators associated with the ideal. This geometric construction allows us to prove that the Moore–Penrose inverse is indeed a real bianalytic map between infinite-dimensional manifolds. We use these results to study the polar decomposition of closed range operators from a similar geometric perspective. At this point we prove that operator monotone functions are real analytic in the norm of any proper symmetrically-normed ideal. Finally, we show that the maps defined by the operator modulus and the polar factor in the polar decomposition of closed range operators are real analytic fiber bundles.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"26 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Torus bundles over lens spaces 透镜空间上的环束
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-05-14 DOI: 10.1515/forum-2022-0279
Oliver H. Wang
{"title":"Torus bundles over lens spaces","authors":"Oliver H. Wang","doi":"10.1515/forum-2022-0279","DOIUrl":"https://doi.org/10.1515/forum-2022-0279","url":null,"abstract":"Let &lt;jats:italic&gt;p&lt;/jats:italic&gt; be an odd prime and let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;m:mo&gt;:&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;→&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;GL&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁡&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0655.png\"/&gt; &lt;jats:tex-math&gt;{rho:mathbb{Z}/prightarrowoperatorname{{GL}}_{n}(mathbb{Z})}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be an action of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0555.png\"/&gt; &lt;jats:tex-math&gt;{mathbb{Z}/p}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; on a lattice and let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;Γ&lt;/m:mi&gt; &lt;m:mo&gt;:=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;m:msub&gt; &lt;m:mo&gt;⋊&lt;/m:mo&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0490.png\"/&gt; &lt;jats:tex-math&gt;{Gamma:=mathbb{Z}^{n}rtimes_{rho}mathbb{Z}/p}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be the corresponding semidirect product. The torus bundle &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;M&lt;/m:mi&gt; &lt;m:mo&gt;:=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msubsup&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;m:mi&gt;ρ&lt;/m:mi&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:msubsup&gt; &lt;m:msub&gt; &lt;m:mo&gt;×&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:msup&gt; &lt;m:mi&gt;S&lt;/m:mi&gt; &lt;m:mi mathvariant=\"normal\"&gt;ℓ&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0440.png\"/&gt; &lt;jats:tex-math&gt;{M:=T^{n}_{rho}times_{mathbb{Z}/p}S^{ell}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; over the lens space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mi&gt;S&lt;/m:mi&gt; &lt;m:mi mathvariant=\"normal\"&gt;ℓ&lt;/m:mi&gt; &lt;/m:msup&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;ℤ&lt;/m:mi&gt; &lt;m:mo&gt;/&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0463.png\"/&gt; &lt;jats:tex-math&gt;{S^{ell}/mathbb{Z}/p}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; has fundamental group Γ. When &lt;jats:inline-formula&gt;","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"66 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multilinear fourier integral operators on modulation spaces 调制空间上的多线性傅里叶积分算子
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-23 DOI: 10.1515/forum-2024-0088
Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal
{"title":"Multilinear fourier integral operators on modulation spaces","authors":"Aparajita Dasgupta, Lalit Mohan, Shyam Swarup Mondal","doi":"10.1515/forum-2024-0088","DOIUrl":"https://doi.org/10.1515/forum-2024-0088","url":null,"abstract":"This corrigendum corrects Proposition 5.2 in [A. Dasgupta, L. Mohan and S. S. Mondal, Multilinear Fourier Integral operators on modulation spaces, Forum Math. 2024, 10.1515/forum-2023-0158].","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"50 8 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laplace convolutions of weighted averages of arithmetical functions 算术函数加权平均数的拉普拉斯卷积
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-23 DOI: 10.1515/forum-2023-0259
Marco Cantarini, Alessandro Gambini, Alessandro Zaccagnini
{"title":"Laplace convolutions of weighted averages of arithmetical functions","authors":"Marco Cantarini, Alessandro Gambini, Alessandro Zaccagnini","doi":"10.1515/forum-2023-0259","DOIUrl":"https://doi.org/10.1515/forum-2023-0259","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mo&gt;;&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;:=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mo largeop=\"true\" symmetric=\"true\"&gt;∑&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0259_eq_0246.png\" /&gt; &lt;jats:tex-math&gt;{G(g;x):=sum_{nleq x}g(n)}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be the summatory function of an arithmetical function &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0259_eq_0403.png\" /&gt; &lt;jats:tex-math&gt;{g(n)}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. In this paper, we prove that we can write weighted averages of an arbitrary fixed number &lt;jats:italic&gt;N&lt;/jats:italic&gt; of arithmetical functions &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;g&lt;/m:mi&gt; &lt;m:mi&gt;j&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo rspace=\"4.2pt\"&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;j&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;…&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0259_eq_0414.png\" /&gt; &lt;jats:tex-math&gt;{g_{j}(n),,jin{1,dots,N}}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; as an integral involving the convolution (in the sense of Laplace) of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:mi&gt;j&lt;/m:mi&gt; &lt;/m:msub&gt; &lt;m:mo&gt;⁢&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0259_eq_0257.png\" /&gt; &lt;jats:tex-math&gt;{G_{j}(x)}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;j&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"105 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted bilinear multiplier theorems in Dunkl setting via singular integrals 通过奇异积分的 Dunkl 设置中的加权双线性乘数定理
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-23 DOI: 10.1515/forum-2023-0398
Suman Mukherjee, Sanjay Parui
{"title":"Weighted bilinear multiplier theorems in Dunkl setting via singular integrals","authors":"Suman Mukherjee, Sanjay Parui","doi":"10.1515/forum-2023-0398","DOIUrl":"https://doi.org/10.1515/forum-2023-0398","url":null,"abstract":"The purpose of this article is to present one and two-weight inequalities for bilinear multiplier operators in Dunkl setting with multiple Muckenhoupt weights. In order to do so, new results regarding Littlewood–Paley type theorems and weighted inequalities for multilinear Calderón–Zygmund operators in Dunkl setting are also proved.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"41 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Square-integrable representations and the coadjoint action of solvable Lie groups 平方可解表征和可解李群的共轭作用
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-23 DOI: 10.1515/forum-2024-0025
Ingrid Beltiţă, Daniel Beltiţă
{"title":"Square-integrable representations and the coadjoint action of solvable Lie groups","authors":"Ingrid Beltiţă, Daniel Beltiţă","doi":"10.1515/forum-2024-0025","DOIUrl":"https://doi.org/10.1515/forum-2024-0025","url":null,"abstract":"We characterize the square-integrable representations of (connected, simply connected) solvable Lie groups in terms of the generalized orbits of the coadjoint action. We prove that the normal representations corresponding, via the Pukánszky correspondence, to open coadjoint orbits are type I, not necessarily square-integrable representations. We show that the quasi-equivalence classes of type I square-integrable representations are in bijection with the simply connected open coadjoint orbits, and the existence of an open coadjoint orbit guarantees the existence of a compact open subset of the space of primitive ideals of the group. When the nilradical has codimension 1, we prove that the isolated points of the primitive ideal space are always of type I. This is not always true for codimension greater than 2, as shown by specific examples of solvable Lie groups that have dense, but not locally closed, coadjoint orbits.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"32 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small generators of abelian number fields 无边数域的小发电机
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-23 DOI: 10.1515/forum-2023-0467
Martin Widmer
{"title":"Small generators of abelian number fields","authors":"Martin Widmer","doi":"10.1515/forum-2023-0467","DOIUrl":"https://doi.org/10.1515/forum-2023-0467","url":null,"abstract":"We show that for each abelian number field <jats:italic>K</jats:italic> of sufficiently large degree <jats:italic>d</jats:italic> there exists an element <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi>K</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0135.png\" /> <jats:tex-math>{alphain K}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>K</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mi>ℚ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0100.png\" /> <jats:tex-math>{K=mathbb{Q}(alpha)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and absolute Weil height <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>H</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:msub> <m:mo>≪</m:mo> <m:mi>d</m:mi> </m:msub> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>K</m:mi> </m:msub> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:mfrac> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0091.png\" /> <jats:tex-math>{H(alpha)ll_{d}|Delta_{K}|^{frac{1}{2d}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>K</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0128.png\" /> <jats:tex-math>{Delta_{K}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> denotes the discriminant of <jats:italic>K</jats:italic>. This answers a question of Ruppert from 1998 in the case of abelian extensions of sufficiently large degree. We also show that the exponent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfrac> <m:mn>1</m:mn> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>d</m:mi> </m:mrow> </m:mfrac> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0467_eq_0152.png\" /> <jats:tex-math>{frac{1}{2d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is best-possible when <jats:italic>d</jats:italic> is even.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"104 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted estimates for product singular integral operators in Journé’s class on RD-spaces RD 空间上 Journé 类积奇异积分算子的加权估计值
IF 0.8 3区 数学
Forum Mathematicum Pub Date : 2024-04-17 DOI: 10.1515/forum-2023-0273
Taotao Zheng, Yanmei Xiao, Xiangxing Tao
{"title":"Weighted estimates for product singular integral operators in Journé’s class on RD-spaces","authors":"Taotao Zheng, Yanmei Xiao, Xiangxing Tao","doi":"10.1515/forum-2023-0273","DOIUrl":"https://doi.org/10.1515/forum-2023-0273","url":null,"abstract":"An RD-space 𝑀 is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in 𝑀. In this paper, firstly, the authors give the Plancherel–Pôlya characterization of product weighted Triebel–Lizorkin spaces and product weighted Besov spaces on RD-spaces and make some estimates for the product singular integral operators in Journé’s class on these function spaces. As a result of these conclusions, they present some sufficient conditions for the boundedness of product singular integral operators on the product Lipschitz spaces and product weighted Hardy spaces. Secondly, by the boundedness of lifting and projection operators, they also obtain that the dual spaces of the product weighted Hardy spaces are product weighted Carleson measure spaces. Using the idea of dual, the authors obtain the weighted boundedness of singular integral operators on the product weighted Carleson measure spaces.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"219 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信