奇特征基本经典列超及其纯偶数还原列子布拉的扎森豪斯变体的等价性

IF 1 3区 数学 Q1 MATHEMATICS
Bin Shu, Lisun Zheng, Ye Ren
{"title":"奇特征基本经典列超及其纯偶数还原列子布拉的扎森豪斯变体的等价性","authors":"Bin Shu, Lisun Zheng, Ye Ren","doi":"10.1515/forum-2023-0326","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔤</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> <m:mo>⊕</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>1</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0687.png\"/> <jats:tex-math>{{\\mathfrak{g}}={\\mathfrak{g}}_{\\bar{0}}\\oplus{\\mathfrak{g}}_{\\bar{1}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a basic classical Lie superalgebra over an algebraically closed field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0676.png\"/> <jats:tex-math>{{\\mathbf{k}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of characteristic <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&gt;</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0586.png\"/> <jats:tex-math>{p&gt;2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the center of the universal enveloping algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>𝔤</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0135.png\"/> <jats:tex-math>{U({\\mathfrak{g}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0434.png\"/> <jats:tex-math>{\\operatorname{Frac}(\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ℨ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0440.png\"/> <jats:tex-math>{\\operatorname{Frac}(\\mathfrak{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the center <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℨ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0390.png\"/> <jats:tex-math>{\\mathfrak{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0140.png\"/> <jats:tex-math>{U({\\mathfrak{g}}_{\\bar{0}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Consequently, both Zassenhaus varieties for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0696.png\"/> <jats:tex-math>{{\\mathfrak{g}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0694.png\"/> <jats:tex-math>{{\\mathfrak{g}}_{\\bar{0}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are birationally equivalent via a subalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo>~</m:mo> </m:mover> <m:mo>⊂</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0516.png\"/> <jats:tex-math>{\\widetilde{\\mathcal{Z}}\\subset\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Spec</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0456.png\"/> <jats:tex-math>{\\operatorname{Spec}(\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is rational under the standard hypotheses.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic\",\"authors\":\"Bin Shu, Lisun Zheng, Ye Ren\",\"doi\":\"10.1515/forum-2023-0326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝔤</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> <m:mo>⊕</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>1</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0687.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}={\\\\mathfrak{g}}_{\\\\bar{0}}\\\\oplus{\\\\mathfrak{g}}_{\\\\bar{1}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a basic classical Lie superalgebra over an algebraically closed field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝐤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0676.png\\\"/> <jats:tex-math>{{\\\\mathbf{k}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of characteristic <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>&gt;</m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0586.png\\\"/> <jats:tex-math>{p&gt;2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0376.png\\\"/> <jats:tex-math>{\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the center of the universal enveloping algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>𝔤</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0135.png\\\"/> <jats:tex-math>{U({\\\\mathfrak{g}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0376.png\\\"/> <jats:tex-math>{\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0434.png\\\"/> <jats:tex-math>{\\\\operatorname{Frac}(\\\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ℨ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0440.png\\\"/> <jats:tex-math>{\\\\operatorname{Frac}(\\\\mathfrak{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the center <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ℨ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0390.png\\\"/> <jats:tex-math>{\\\\mathfrak{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0140.png\\\"/> <jats:tex-math>{U({\\\\mathfrak{g}}_{\\\\bar{0}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Consequently, both Zassenhaus varieties for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0696.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0694.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}_{\\\\bar{0}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are birationally equivalent via a subalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo>~</m:mo> </m:mover> <m:mo>⊂</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0516.png\\\"/> <jats:tex-math>{\\\\widetilde{\\\\mathcal{Z}}\\\\subset\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Spec</m:mi> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0456.png\\\"/> <jats:tex-math>{\\\\operatorname{Spec}(\\\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is rational under the standard hypotheses.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0326\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0326","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 𝔤 = 𝔤 0 ¯ ⊕ 𝔤 1 ¯ {{\mathfrak{g}}=\{mathfrak{g}}_{\bar{0}}}\oplus{\mathfrak{g}}_{\bar{1}}} 是特征 p >;2 {p>2}.用 𝒵 {\mathcal{Z}} 表示普遍包络代数 U ( 𝔤 ) {U({\mathfrak{g}})}的中心。那么𝒵 {\mathcal{Z}}就是有限生成的纯偶数交换代数,没有非零除数。在本文中的中心 ℨ {\mathfrak{Z}} 的分数 Frac ( 𝒵 ) {\operatorname{Frac}(\mathcal{Z})} 与 Frac ( ℨ ) {\operatorname{Frac}(\mathfrak{Z})} 同构。因此,𝔤 {{mathfrak{g}} 和 𝔤 0 ¯ {{mathfrak{g}}_{bar{0}} 的两个 Zassenhaus varieties 都通过子代数 𝒵 ~ ⊂ 𝒵 {\widetilde\mathcal{Z}}\subset\mathcal{Z}} 等价。 在标准假设下,Spec ( 𝒵 ) {\operatorname{Spec}(\mathcal{Z})} 是有理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic
Let 𝔤 = 𝔤 0 ¯ 𝔤 1 ¯ {{\mathfrak{g}}={\mathfrak{g}}_{\bar{0}}\oplus{\mathfrak{g}}_{\bar{1}}} be a basic classical Lie superalgebra over an algebraically closed field 𝐤 {{\mathbf{k}}} of characteristic p > 2 {p>2} . Denote by 𝒵 {\mathcal{Z}} the center of the universal enveloping algebra U ( 𝔤 ) {U({\mathfrak{g}})} . Then 𝒵 {\mathcal{Z}} turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction Frac ( 𝒵 ) {\operatorname{Frac}(\mathcal{Z})} is isomorphic to Frac ( ) {\operatorname{Frac}(\mathfrak{Z})} for the center {\mathfrak{Z}} of U ( 𝔤 0 ¯ ) {U({\mathfrak{g}}_{\bar{0}})} . Consequently, both Zassenhaus varieties for 𝔤 {{\mathfrak{g}}} and 𝔤 0 ¯ {{\mathfrak{g}}_{\bar{0}}} are birationally equivalent via a subalgebra 𝒵 ~ 𝒵 {\widetilde{\mathcal{Z}}\subset\mathcal{Z}} , and Spec ( 𝒵 ) {\operatorname{Spec}(\mathcal{Z})} is rational under the standard hypotheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信