求助PDF
{"title":"奇特征基本经典列超及其纯偶数还原列子布拉的扎森豪斯变体的等价性","authors":"Bin Shu, Lisun Zheng, Ye Ren","doi":"10.1515/forum-2023-0326","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>𝔤</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> <m:mo>⊕</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>1</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0687.png\"/> <jats:tex-math>{{\\mathfrak{g}}={\\mathfrak{g}}_{\\bar{0}}\\oplus{\\mathfrak{g}}_{\\bar{1}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a basic classical Lie superalgebra over an algebraically closed field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝐤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0676.png\"/> <jats:tex-math>{{\\mathbf{k}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of characteristic <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0586.png\"/> <jats:tex-math>{p>2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the center of the universal enveloping algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>𝔤</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0135.png\"/> <jats:tex-math>{U({\\mathfrak{g}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0376.png\"/> <jats:tex-math>{\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0434.png\"/> <jats:tex-math>{\\operatorname{Frac}(\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ℨ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0440.png\"/> <jats:tex-math>{\\operatorname{Frac}(\\mathfrak{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the center <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ℨ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0390.png\"/> <jats:tex-math>{\\mathfrak{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0140.png\"/> <jats:tex-math>{U({\\mathfrak{g}}_{\\bar{0}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Consequently, both Zassenhaus varieties for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝔤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0696.png\"/> <jats:tex-math>{{\\mathfrak{g}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\"true\"> <m:mn>0</m:mn> <m:mo stretchy=\"false\">¯</m:mo> </m:mover> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0694.png\"/> <jats:tex-math>{{\\mathfrak{g}}_{\\bar{0}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are birationally equivalent via a subalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mover accent=\"true\"> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo>~</m:mo> </m:mover> <m:mo>⊂</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0516.png\"/> <jats:tex-math>{\\widetilde{\\mathcal{Z}}\\subset\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>Spec</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi mathvariant=\"script\">𝒵</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0326_eq_0456.png\"/> <jats:tex-math>{\\operatorname{Spec}(\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is rational under the standard hypotheses.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic\",\"authors\":\"Bin Shu, Lisun Zheng, Ye Ren\",\"doi\":\"10.1515/forum-2023-0326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>𝔤</m:mi> <m:mo>=</m:mo> <m:mrow> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> <m:mo>⊕</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>1</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0687.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}={\\\\mathfrak{g}}_{\\\\bar{0}}\\\\oplus{\\\\mathfrak{g}}_{\\\\bar{1}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a basic classical Lie superalgebra over an algebraically closed field <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝐤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0676.png\\\"/> <jats:tex-math>{{\\\\mathbf{k}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of characteristic <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo>></m:mo> <m:mn>2</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0586.png\\\"/> <jats:tex-math>{p>2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Denote by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0376.png\\\"/> <jats:tex-math>{\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> the center of the universal enveloping algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>𝔤</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0135.png\\\"/> <jats:tex-math>{U({\\\\mathfrak{g}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Then <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0376.png\\\"/> <jats:tex-math>{\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0434.png\\\"/> <jats:tex-math>{\\\\operatorname{Frac}(\\\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is isomorphic to <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Frac</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ℨ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0440.png\\\"/> <jats:tex-math>{\\\\operatorname{Frac}(\\\\mathfrak{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the center <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ℨ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0390.png\\\"/> <jats:tex-math>{\\\\mathfrak{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>U</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0140.png\\\"/> <jats:tex-math>{U({\\\\mathfrak{g}}_{\\\\bar{0}})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Consequently, both Zassenhaus varieties for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝔤</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0696.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝔤</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>0</m:mn> <m:mo stretchy=\\\"false\\\">¯</m:mo> </m:mover> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0694.png\\\"/> <jats:tex-math>{{\\\\mathfrak{g}}_{\\\\bar{0}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are birationally equivalent via a subalgebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo>~</m:mo> </m:mover> <m:mo>⊂</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0516.png\\\"/> <jats:tex-math>{\\\\widetilde{\\\\mathcal{Z}}\\\\subset\\\\mathcal{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>Spec</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi mathvariant=\\\"script\\\">𝒵</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0326_eq_0456.png\\\"/> <jats:tex-math>{\\\\operatorname{Spec}(\\\\mathcal{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is rational under the standard hypotheses.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0326\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0326","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用