与维拉索罗代数有关的非无限级数列代数的表示

IF 1 3区 数学 Q1 MATHEMATICS
Chunguang Xia, Tianyu Ma, Xiao Dong, Mingjing Zhang
{"title":"与维拉索罗代数有关的非无限级数列代数的表示","authors":"Chunguang Xia, Tianyu Ma, Xiao Dong, Mingjing Zhang","doi":"10.1515/forum-2023-0320","DOIUrl":null,"url":null,"abstract":"In this paper, we study representations of non-finitely graded Lie algebras <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0340.png\"/> <jats:tex-math>{\\mathcal{W}(\\epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> related to Virasoro algebra, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ϵ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0321.png\"/> <jats:tex-math>{\\epsilon=\\pm 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely speaking, we completely classify the free <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒰</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>𝔥</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0333.png\"/> <jats:tex-math>{\\mathcal{U}(\\mathfrak{h})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules of rank one over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"script\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0320_eq_0340.png\"/> <jats:tex-math>{\\mathcal{W}(\\epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and find that these module structures are rather different from those of other graded Lie algebras. We also determine the simplicity and isomorphism classes of these modules.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representations of non-finitely graded Lie algebras related to Virasoro algebra\",\"authors\":\"Chunguang Xia, Tianyu Ma, Xiao Dong, Mingjing Zhang\",\"doi\":\"10.1515/forum-2023-0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study representations of non-finitely graded Lie algebras <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0320_eq_0340.png\\\"/> <jats:tex-math>{\\\\mathcal{W}(\\\\epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> related to Virasoro algebra, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ϵ</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mo>±</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0320_eq_0321.png\\\"/> <jats:tex-math>{\\\\epsilon=\\\\pm 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Precisely speaking, we completely classify the free <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒰</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>𝔥</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0320_eq_0333.png\\\"/> <jats:tex-math>{\\\\mathcal{U}(\\\\mathfrak{h})}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-modules of rank one over <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"script\\\">𝒲</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ϵ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2023-0320_eq_0340.png\\\"/> <jats:tex-math>{\\\\mathcal{W}(\\\\epsilon)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and find that these module structures are rather different from those of other graded Lie algebras. We also determine the simplicity and isomorphism classes of these modules.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2023-0320\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0320","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了与维拉索罗代数有关的非无限分级列代数𝒲 ( ϵ ) {\mathcal{W}(\epsilon)} 的表示,其中ϵ = ± 1 {\epsilon=pm\ 1} 。准确地说,我们将自由的𝒰 ( 𝔥 ) {\mathcal{U}(\mathfrak{h})} 完全分类。 -𝒲 ( ϵ ) {\mathcal{W}(\epsilon)} 上的一阶模块,并发现这些模块结构与其他分级列的模块结构相当不同。我们还确定了这些模块的简单性和同构类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of non-finitely graded Lie algebras related to Virasoro algebra
In this paper, we study representations of non-finitely graded Lie algebras 𝒲 ( ϵ ) {\mathcal{W}(\epsilon)} related to Virasoro algebra, where ϵ = ± 1 {\epsilon=\pm 1} . Precisely speaking, we completely classify the free 𝒰 ( 𝔥 ) {\mathcal{U}(\mathfrak{h})} -modules of rank one over 𝒲 ( ϵ ) {\mathcal{W}(\epsilon)} , and find that these module structures are rather different from those of other graded Lie algebras. We also determine the simplicity and isomorphism classes of these modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信