透镜空间上的环束

IF 1 3区 数学 Q1 MATHEMATICS
Oliver H. Wang
{"title":"透镜空间上的环束","authors":"Oliver H. Wang","doi":"10.1515/forum-2022-0279","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>p</jats:italic> be an odd prime and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ρ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msub> <m:mi>GL</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>ℤ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0655.png\"/> <jats:tex-math>{\\rho:\\mathbb{Z}/p\\rightarrow\\operatorname{{GL}}_{n}(\\mathbb{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be an action of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0555.png\"/> <jats:tex-math>{\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on a lattice and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo>:=</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> <m:msub> <m:mo>⋊</m:mo> <m:mi>ρ</m:mi> </m:msub> <m:mi>ℤ</m:mi> </m:mrow> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0490.png\"/> <jats:tex-math>{\\Gamma:=\\mathbb{Z}^{n}\\rtimes_{\\rho}\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the corresponding semidirect product. The torus bundle <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>M</m:mi> <m:mo>:=</m:mo> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mi>ρ</m:mi> <m:mi>n</m:mi> </m:msubsup> <m:msub> <m:mo>×</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msub> <m:msup> <m:mi>S</m:mi> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0440.png\"/> <jats:tex-math>{M:=T^{n}_{\\rho}\\times_{\\mathbb{Z}/p}S^{\\ell}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over the lens space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>S</m:mi> <m:mi mathvariant=\"normal\">ℓ</m:mi> </m:msup> <m:mo>/</m:mo> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0463.png\"/> <jats:tex-math>{S^{\\ell}/\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has fundamental group Γ. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0555.png\"/> <jats:tex-math>{\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fixes only the origin of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0571.png\"/> <jats:tex-math>{\\mathbb{Z}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Davis and Lück (2021) compute the <jats:italic>L</jats:italic>-groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:mi>m</m:mi> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>j</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0421.png\"/> <jats:tex-math>{L^{\\langle j\\rangle}_{m}(\\mathbb{Z}[\\Gamma])}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the structure set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mrow> <m:mi>geo</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0610.png\"/> <jats:tex-math>{\\mathcal{{S}}^{{\\rm geo},s}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we extend these computations to all actions of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0555.png\"/> <jats:tex-math>{\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0571.png\"/> <jats:tex-math>{\\mathbb{Z}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we compute <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:mi>m</m:mi> <m:mrow> <m:mo stretchy=\"false\">〈</m:mo> <m:mi>j</m:mi> <m:mo stretchy=\"false\">〉</m:mo> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0421.png\"/> <jats:tex-math>{L^{\\langle j\\rangle}_{m}(\\mathbb{Z}[\\Gamma])}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi mathvariant=\"script\">𝒮</m:mi> <m:mrow> <m:mi>geo</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0610.png\"/> <jats:tex-math>{\\mathcal{{S}}^{{\\rm geo},s}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a case where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:munder accentunder=\"true\"> <m:mi>E</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">Γ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2022-0279_eq_0680.png\"/> <jats:tex-math>{\\underline{E}\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has a non-discrete singular set.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torus bundles over lens spaces\",\"authors\":\"Oliver H. Wang\",\"doi\":\"10.1515/forum-2022-0279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>p</jats:italic> be an odd prime and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ρ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msub> <m:mi>GL</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>⁡</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>ℤ</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0655.png\\\"/> <jats:tex-math>{\\\\rho:\\\\mathbb{Z}/p\\\\rightarrow\\\\operatorname{{GL}}_{n}(\\\\mathbb{Z})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be an action of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0555.png\\\"/> <jats:tex-math>{\\\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on a lattice and let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo>:=</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> <m:msub> <m:mo>⋊</m:mo> <m:mi>ρ</m:mi> </m:msub> <m:mi>ℤ</m:mi> </m:mrow> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0490.png\\\"/> <jats:tex-math>{\\\\Gamma:=\\\\mathbb{Z}^{n}\\\\rtimes_{\\\\rho}\\\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the corresponding semidirect product. The torus bundle <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>M</m:mi> <m:mo>:=</m:mo> <m:mrow> <m:msubsup> <m:mi>T</m:mi> <m:mi>ρ</m:mi> <m:mi>n</m:mi> </m:msubsup> <m:msub> <m:mo>×</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msub> <m:msup> <m:mi>S</m:mi> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:msup> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0440.png\\\"/> <jats:tex-math>{M:=T^{n}_{\\\\rho}\\\\times_{\\\\mathbb{Z}/p}S^{\\\\ell}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over the lens space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi>S</m:mi> <m:mi mathvariant=\\\"normal\\\">ℓ</m:mi> </m:msup> <m:mo>/</m:mo> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0463.png\\\"/> <jats:tex-math>{S^{\\\\ell}/\\\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has fundamental group Γ. When <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0555.png\\\"/> <jats:tex-math>{\\\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> fixes only the origin of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0571.png\\\"/> <jats:tex-math>{\\\\mathbb{Z}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Davis and Lück (2021) compute the <jats:italic>L</jats:italic>-groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:mi>m</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>j</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0421.png\\\"/> <jats:tex-math>{L^{\\\\langle j\\\\rangle}_{m}(\\\\mathbb{Z}[\\\\Gamma])}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the structure set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mrow> <m:mi>geo</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0610.png\\\"/> <jats:tex-math>{\\\\mathcal{{S}}^{{\\\\rm geo},s}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this paper, we extend these computations to all actions of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>/</m:mo> <m:mi>p</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0555.png\\\"/> <jats:tex-math>{\\\\mathbb{Z}/p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>ℤ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0571.png\\\"/> <jats:tex-math>{\\\\mathbb{Z}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, we compute <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msubsup> <m:mi>L</m:mi> <m:mi>m</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">〈</m:mo> <m:mi>j</m:mi> <m:mo stretchy=\\\"false\\\">〉</m:mo> </m:mrow> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ℤ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">[</m:mo> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> <m:mo stretchy=\\\"false\\\">]</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0421.png\\\"/> <jats:tex-math>{L^{\\\\langle j\\\\rangle}_{m}(\\\\mathbb{Z}[\\\\Gamma])}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:msup> <m:mi mathvariant=\\\"script\\\">𝒮</m:mi> <m:mrow> <m:mi>geo</m:mi> <m:mo>,</m:mo> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0610.png\\\"/> <jats:tex-math>{\\\\mathcal{{S}}^{{\\\\rm geo},s}(M)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> in a case where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:munder accentunder=\\\"true\\\"> <m:mi>E</m:mi> <m:mo>¯</m:mo> </m:munder> <m:mo>⁢</m:mo> <m:mi mathvariant=\\\"normal\\\">Γ</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2022-0279_eq_0680.png\\\"/> <jats:tex-math>{\\\\underline{E}\\\\Gamma}</jats:tex-math> </jats:alternatives> </jats:inline-formula> has a non-discrete singular set.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2022-0279\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2022-0279","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 p 是奇素数,让 ρ : ℤ / p → GL n ( ℤ ) {\rho:\mathbb{Z}/p\rightarrow\operatorname{{GL}}_{n}(\mathbb{Z})} } 是 ℤ / p {\mathbb{Z}/p} 在网格上的作用,让 Γ := ℤ n ⋊ ρ ℤ / p {\Gamma:=\mathbb{Z}^{n}\rtimes_\{rho}\mathbb{Z}/p} 是相应的半间接积。透镜空间 S ℓ / ℤ / p {S^\{ell}/\mathbb{Z}/p} 上的环束 M := T ρ n × ℤ / p S ℓ {M:=T^{n}_{\rho}\times_{\mathbb{Z}/p}S^{\ell}} 具有基群 Γ。当ℤ / p {\mathbb{Z}/p} 只固定了ℤ n {\mathbb{Z}^{n} 的原点时} Davis 和 Lück (2021) 计算了 L 群 L m 〈 j 〉 ( ℤ [ Γ ] ) {L^{langle j\rangle}_{m}(\mathbb{Z}[\Gamma])} 和结构集 𝒮 geo , s ( M ) {\mathcal{S}}^{\rm geo},s}(M)} 。在本文中,我们将这些计算扩展到ℤ / p {mathbb{Z}/p} 对ℤ n {mathbb{Z}^{n} 的所有作用。} .具体而言,我们计算 L m 〈 j 〉 ( ℤ [ Γ ] ) {L^{langle j\rangle}_{m}(\mathbb{Z}[\Gamma])} 和 𝒮 geo 、s ( M ) {\mathcal{S}}^{\rm geo},s}(M)} 在 E ¯ Γ {\underline{E}\Gamma} 有一个非离散奇异集的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torus bundles over lens spaces
Let p be an odd prime and let ρ : / p GL n ( ) {\rho:\mathbb{Z}/p\rightarrow\operatorname{{GL}}_{n}(\mathbb{Z})} be an action of / p {\mathbb{Z}/p} on a lattice and let Γ := n ρ / p {\Gamma:=\mathbb{Z}^{n}\rtimes_{\rho}\mathbb{Z}/p} be the corresponding semidirect product. The torus bundle M := T ρ n × / p S {M:=T^{n}_{\rho}\times_{\mathbb{Z}/p}S^{\ell}} over the lens space S / / p {S^{\ell}/\mathbb{Z}/p} has fundamental group Γ. When / p {\mathbb{Z}/p} fixes only the origin of n {\mathbb{Z}^{n}} , Davis and Lück (2021) compute the L-groups L m j ( [ Γ ] ) {L^{\langle j\rangle}_{m}(\mathbb{Z}[\Gamma])} and the structure set 𝒮 geo , s ( M ) {\mathcal{{S}}^{{\rm geo},s}(M)} . In this paper, we extend these computations to all actions of / p {\mathbb{Z}/p} on n {\mathbb{Z}^{n}} . In particular, we compute L m j ( [ Γ ] ) {L^{\langle j\rangle}_{m}(\mathbb{Z}[\Gamma])} and 𝒮 geo , s ( M ) {\mathcal{{S}}^{{\rm geo},s}(M)} in a case where E ¯ Γ {\underline{E}\Gamma} has a non-discrete singular set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信